

International vocabulary of metrology – Basic and general concepts and associated terms (VIM)

3rd edition

2008 version with minor corrections

Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés (VIM)

3^e édition

Version 2008 avec corrections mineures

Copyright of this JCGM guidance document is shared jointly by the JCGM member organizations (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML).

Copyright

Even if electronic versions are available free of charge on the website of one or more of the JCGM member organizations, economic and moral copyrights related to all JCGM publications are internationally protected. The JCGM does not, without its written authorisation, permit third parties to rewrite or re-brand issues, to sell copies to the public, or to broadcast or use on-line its publications. Equally, the JCGM also objects to distortion, augmentation or mutilation of its publications, including its titles, slogans and logos, and those of its member organizations.

Official versions and translations

The only official versions of documents are those published by the JCGM, in their original languages.

The JCGM's publications may be translated into languages other than those in which the documents were originally published by the JCGM. Permission must be obtained from the JCGM before a translation can be made. All translations should respect the original and official format of the formulae and units (without any conversion to other formulae or units), and contain the following statement (to be translated into the chosen language):

All JCGM's products are internationally protected by copyright. This translation of the original JCGM document has been produced with the permission of the JCGM. The JCGM retains full internationally protected copyright on the design and content of this document and on the JCGM's titles, slogan and logos. The member organizations of the JCGM also retain full internationally protected right on their titles, slogans and logos included in the JCGM's publications. The only official version is the document published by the JCGM, in the original languages.

The JCGM does not accept any liability for the relevance, accuracy, completeness or quality of the information and materials offered in any translation. A copy of the translation shall be provided to the JCGM at the time of publication.

Reproduction

The JCGM's publications may be reproduced, provided written permission has been granted by the JCGM. A sample of any reproduced document shall be provided to the JCGM at the time of reproduction and contain the following statement:

This document is reproduced with the permission of the JCGM, which retains full internationally protected copyright on the design and content of this document and on the JCGM's titles, slogans and logos. The member organizations of the JCGM also retain full internationally protected right on their titles, slogans and logos included in the JCGM's publications. The only official versions are the original versions of the documents published by the JCGM.

Disclaimer

The JCGM and its member organizations have published this document to enhance access to information about metrology. They endeavor to update it on a regular basis, but cannot guarantee the accuracy at all times and shall not be responsible for any direct or indirect damage that may result from its use. Any reference to commercial products of any kind (including but not restricted to any software, data or hardware) or links to websites, over which the JCGM and its member organizations have no control and for which they assume no responsibility, does not imply any approval, endorsement or recommendation by the JCGM and its member organizations.

Les droits d'auteur du présent document, élaboré sous la conduite du JCGM, appartiennent conjointement aux organisations membres du JCGM (JCGM, CEI, FICC, ILAC, ISO, OIML, UICPA et UIPPA).

Droits d'auteur

Les droits économiques et moraux attachés aux publications du JCGM font l'objet d'une protection internationale, même si des versions électroniques peuvent en être téléchargées gratuitement sur les sites internet d'une ou de plusieurs organisations membres du JCGM. Les tiers ne sont pas autorisés, sans accord écrit du JCGM, à réécrire ou à modifier ses publications, à vendre des copies au public, ni à diffuser ou à mettre en ligne ses publications. De même, le JCGM s'oppose aux altérations, ajouts et censures qui pourraient être faits à ses publications, y compris à ses titres, slogans ou logos, et ceux de ses organisations membres.

Versions faisant foi et traductions

Les seules versions qui font foi sont les versions originales des documents publiés par le JCGM, dans leur langue originale.

Les publications du JCGM peuvent faire l'objet de traductions dans d'autres langues que celles dans lesquelles le document a été publié originellement par le JCGM. L'accord du JCGM doit être obtenu avant qu'une traduction puisse être faite. Toutes les traductions doivent respecter le format, les formules et unités originaux et faisant foi (sans aucune conversion de formules ou d'unités) et faire mention de la phrase suivante (devant être traduite vers la langue de traduction):

Tous les travaux du JCGM font l'objet de droits d'auteurs protégés internationalement. La présente traduction du document original du JCGM a été établie avec l'accord du JCGM. Le JCGM conserve l'intégralité des droits d'auteur, protégés internationalement, sur la forme et le contenu de ce document et sur ses titres, slogans ou logos. Les organisations membres du JCGM conservent également l'intégralité des droits, protégés internationalement, sur leurs titres, slogans ou logos contenus dans les publications du JCGM. La seule version qui fait foi est le document publié par le JCGM, dans la langue originale».

Le JCGM ne peut être tenu responsable de la pertinence, de l'exactitude, de l'exhaustivité ou de la qualité des informations ou documentations contenues dans quelque traduction que ce soit. Une copie de la traduction doit être adressée au JCGM.

Reproduction

Les publications du JCGM peuvent être reproduites, sous réserve d'obtenir l'accord écrit du JCGM. Un exemplaire de tout document reproduit doit être adressé au JCGM et doit faire mention de la phrase suivante:

Ce document est reproduit avec l'accord du JCGM qui conserve l'intégralité des droits d'auteur, protégés internationalement, sur la forme et le contenu de ce document et sur ses titres, slogans ou logos. Les organisations membres du JCGM conservent également l'intégralité des droits, protégés internationalement, sur leurs titres, slogans ou logos figurant dans les publications du JCGM. Les seules versions qui font foi sont les versions originales des documents publiés par le JCGM.

Exonération de responsabilité

Le JCGM et ses organisations membres ont publié le présent document afin de faciliter l'accès à l'information sur la métrologie. Ils s'efforcent de le mettre à jour régulièrement, mais ne peuvent garantir l'exactitude en tout temps et ne sauraient être tenus pour responsables d'un quelconque dommage, direct ou indirect, pouvant résulter de son utilisation. L'existence de références à des produits du commerce, quels qu'ils soient (y compris, mais non limité à, tous logiciels, données ou matériels) ou de liens vers des sites internet sur lesquels le JCGM et ses organisations membres n'ont aucun contrôle, et pour lesquels ils n'assument aucune responsabilité, ne doit pas être interprétée comme une approbation, un endossement ou une recommandation par le JCGM et ses organisations membres.

C	ontents	Page
Fo	preword	vi
Int	troduction	viii
Со	onventions	xii
Sc	соре	1
1	Quantities and units	2
2		
3	Devices for measurement	34
4	Properties of measuring devices	37
5	Measurement standards (Etalons)	46
An	nnex A (informative) Concept diagrams	54
Bil	bliography	81
Lis	st of acronyms	86
Δlı	nhahetical index	88

Sc	ommaire	Page
Av	ant-propos	vii
Inti	roduction	x
Со	nventions	xiii
Do	maine d'application	1
1	Grandeurs et unités	2
2	Mesurages	16
3	Dispositifs de mesure	34
4	Propriétés des dispositifs de mesure	37
5	Étalons	46
An	nexe A (informative) Schémas conceptuels	54
Bik	bliographiebliographie	81
Lis	ste des sigles	86
Ind	dex alphabétique	90

Foreword

In 1997 the Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the BIPM, was formed by the seven International Organizations that had prepared the original versions of the *Guide to the expression of uncertainty in measurement (GUM)* and the *International vocabulary of basic and general terms in metrology (VIM)*. The Joint Committee took on this part of the work of the ISO Technical Advisory Group 4 (TAG 4), which had developed the GUM and the VIM. The Joint Committee was originally made up of representatives from the International Bureau of Weights and Measures (BIPM), the International Electrotechnical Commission (IEC), the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Organization for Standardization (ISO), the International Union of Pure and Applied Physics (IUPAP), and the International Organization of Legal Metrology (OIML). In 2005, the International Laboratory Accreditation Cooperation (ILAC) officially joined the seven founding international organizations.

The JCGM has two Working Groups. Working Group 1 (JCGM/WG 1) on the GUM has the task of promoting the use of the GUM and preparing Supplements to the GUM for broad application. Working Group 2 (JCGM/WG 2) on the VIM has the task of revising the VIM and promoting its use. Working Group 2 is composed of up to two representatives of each member organization, supplemented by a limited number of experts. The third edition of the VIM has been prepared by Working Group 2.

In 2004, a first draft of the third edition of the VIM was submitted for comments and proposals to the eight organizations represented in the JCGM, which in most cases consulted their members or affiliates, including numerous National Metrology Institutes. Comments were studied and discussed, taken into account when appropriate, and replied to by JCGM/WG 2. A final draft of the third edition was submitted in 2006 to the eight organizations for review and approval.

All subsequent comments were considered and taken into account as appropriate by Working Group 2.

The third edition of the VIM has been approved by each and all of the eight JCGM Member organizations.

This third edition cancels and replaces the second edition 1993.

Avant-propos

En 1997 le Comité commun pour les guides en métrologie (JCGM), présidé par le Directeur du BIPM, a été formé par les sept Organisations internationales qui avaient préparé les versions originales du *Guide pour l'expression de l'incertitude de mesure (GUM)* et du *Vocabulaire international des termes fondamentaux et généraux en métrologie (VIM)*. Le Comité commun a repris cette partie du travail du Groupe technique consultatif 4 (TAG 4) de l'ISO, qui avait élaboré le GUM et le VIM. Le Comité commun était constitué à l'origine de représentants du Bureau international des poids et mesures (BIPM), de la Commission électrotechnique internationale (CEI), de la Fédération internationale de chimie clinique et de biologie médicale (IFCC), de l'Organisation internationale de normalisation (ISO), de l'Union internationale de chimie pure et appliquée (UICPA), de l'Union internationale de physique pure et appliquée (UIPPA) et de l'Organisation internationale de métrologie légale (OIML). En 2005, la Coopération internationale sur l'agrément des laboratoires d'essais (ILAC) a rejoint officiellement les sept organisations internationales fondatrices.

Le JCGM a deux Groupes de travail. Le Groupe de travail 1 (JCGM/WG 1) sur le GUM a la tâche de promouvoir l'usage du GUM et de préparer des suppléments au GUM pour en élargir le champ d'application. Le Groupe de travail 2 (JCGM/WG 2) sur le VIM a la tâche de réviser le VIM et d'en promouvoir l'usage. Le Groupe de travail 2 est composé de deux représentants au plus de chaque organisation membre et de quelques autres experts. Cette troisième édition du VIM a été préparée par le Groupe de travail 2.

En 2004, un premier projet de troisième édition du VIM a été soumis pour commentaires et propositions aux huit organisations représentées dans le JCGM, qui pour la plupart ont consulté leurs membres ou affiliés, y compris de nombreux laboratoires nationaux de métrologie. Le JCGM/WG 2 a étudié et discuté les commentaires, les a éventuellement pris en compte et a élaboré des réponses. Une version finale de la troisième édition a été soumise en 2006 aux huit organisations pour évaluation et approbation.

Tous les commentaires ultérieurs ont été examinés et éventuellement pris en compte par le Groupe de travail 2.

Cette troisième édition a été approuvée à l'unanimité par les huit organisations membres du JCGM.

Cette troisième édition annule et remplace la deuxième édition 1993.

Introduction

In general, a vocabulary is a "terminological dictionary which contains designations and definitions from one or more specific subject fields" (ISO 1087-1:2000, 3.7.2). The present Vocabulary pertains to metrology, the "science of measurement and its application". It also covers the basic principles governing quantities and units. The field of quantities and units could be treated in many different ways. Clause 1 of this Vocabulary is one such treatment, and is based on the principles laid down in the various parts of ISO 31, *Quantities and units*, currently being replaced by ISO 80000 and IEC 80000 series *Quantities and units*, and in the SI Brochure, *The International System of Units* (published by the BIPM).

The second edition of the *International vocabulary of basic and general terms in metrology* (VIM) was published in 1993. The need to cover measurements in chemistry and laboratory medicine for the first time, as well as to incorporate concepts such as those that relate to metrological traceability, measurement uncertainty, and nominal properties, led to this third edition. Its title is now *International vocabulary of metrology* — *Basic and general concepts and associated terms (VIM)*, in order to emphasize the primary role of concepts in developing a vocabulary.

In this Vocabulary, it is taken for granted that there is no fundamental difference in the basic principles of measurement in physics, chemistry, laboratory medicine, biology, or engineering. Furthermore, an attempt has been made to meet conceptual needs of measurement in fields such as biochemistry, food science, forensic science, and molecular biology.

Several concepts that appeared in the second edition of the VIM do not appear in this third edition because they are no longer considered to be basic or general. For example, the concept 'response time', used in describing the temporal behaviour of a measuring system, is not included. For concepts related to measurement devices that are not covered by this third edition of the VIM, the reader should consult other vocabularies such as IEC 60050, *International Electrotechnical Vocabulary*, IEV. For concepts concerned with quality management, mutual recognition arrangements pertaining to metrology, or legal metrology, the reader is referred to documents given in the bibliography.

Development of this third edition of the VIM has raised some fundamental questions about different current philosophies and descriptions of measurement, as will be summarized below. These differences sometimes lead to difficulties in developing definitions that could be used across the different descriptions. No preference is given in this third edition to any of the particular approaches.

The change in the treatment of measurement uncertainty from an Error Approach (sometimes called Traditional Approach or True Value Approach) to an Uncertainty Approach necessitated reconsideration of some of the related concepts appearing in the second edition of the VIM. The objective of measurement in the Error Approach is to determine an estimate of the true value that is as close as possible to that single true value. The deviation from the true value is composed of random and systematic errors. The two kinds of errors, assumed to be always distinguishable, have to be treated differently. No rule can be derived on how they combine to form the total error of any given measurement result, usually taken as the estimate. Usually, only an upper limit of the absolute value of the total error is estimated, sometimes loosely named "uncertainty".

In the CIPM Recommendation INC-1 (1980) on the Statement of Uncertainties, it is suggested that the components of measurement uncertainty should be grouped into two categories, Type A and Type B, according to whether they were evaluated by statistical methods or otherwise, and that they be combined to yield a variance according to the rules of mathematical probability theory by also treating the Type B components in terms of variances. The resulting standard deviation is an expression of a measurement uncertainty. A view of the Uncertainty Approach was detailed in the *Guide to the expression of uncertainty in measurement (GUM)* (1993, corrected and reprinted in 1995) that focused on the mathematical treatment of measurement uncertainty through an explicit measurement model under the assumption that the measurand can be characterized by an essentially unique value. Moreover, in the GUM as well as in IEC documents, guidance is provided on the Uncertainty Approach in the case of a single reading of a calibrated instrument, a situation normally met in industrial metrology.

The objective of measurement in the Uncertainty Approach is not to determine a true value as closely as possible. Rather, it is assumed that the information from measurement only permits assignment of an interval of reasonable values to the measurand, based on the assumption that no mistakes have been made in performing the measurement. Additional relevant information may reduce the range of the interval of values

that can reasonably be attributed to the measurand. However, even the most refined measurement cannot reduce the interval to a single value because of the finite amount of detail in the definition of a measurand. The definitional uncertainty, therefore, sets a minimum limit to any measurement uncertainty. The interval can be represented by one of its values, called a "measured quantity value".

In the GUM, the definitional uncertainty is considered to be negligible with respect to the other components of measurement uncertainty. The objective of measurement is then to establish a probability that this essentially unique value lies within an interval of measured quantity values, based on the information available from measurement.

The IEC scenario focuses on measurements with single readings, permitting the investigation of whether quantities vary in time by demonstrating whether measurement results are compatible. The IEC view also allows non-negligible definitional uncertainties. The validity of the measurement results is highly dependent on the metrological properties of the instrument as demonstrated by its calibration. The interval of values offered to describe the measurand is the interval of values of measurement standards that would have given the same indications.

In the GUM, the concept of true value is kept for describing the objective of measurement, but the adjective "true" is considered to be redundant. The IEC does not use the concept to describe this objective. In this Vocabulary, the concept and term are retained because of common usage and the importance of the concept.

Introduction

En général, un vocabulaire est un «dictionnaire terminologique contenant des désignations et des définitions tirées d'un ou plusieurs domaines particuliers» (ISO 1087-1:2000, 3.7.2). Le présent Vocabulaire concerne la métrologie, «science des mesurages et ses applications». Il couvre aussi les principes de base régissant les grandeurs et unités. Le domaine des grandeurs et unités peut être traité de différentes manières. Celle retenue pour l'Article 1 de ce Vocabulaire est fondée sur les principes exposés dans les différentes parties de l'ISO 31, *Grandeurs et unités*, en cours de remplacement par les séries ISO 80000 et CEI 80000 *Grandeurs et unités*, et dans la Brochure sur le SI, *Le Système international d'unités* (publiée par le BIPM).

La deuxième édition du *Vocabulaire international des termes fondamentaux et généraux de métrologie* (VIM) a été publiée en 1993. Le besoin de couvrir pour la première fois les mesures en chimie et en biologie médicale, ainsi que celui d'inclure des concepts relatifs, par exemple, à la traçabilité métrologique, à l'incertitude de mesure et aux propriétés qualitatives, ont conduit à cette troisième édition. Son titre est devenu *Vocabulaire international de métrologie* — *Concepts fondamentaux et généraux et termes associés* (VIM), afin de mettre en évidence le rôle primordial des concepts dans l'élaboration d'un vocabulaire.

Dans ce Vocabulaire, on considère qu'il n'y a pas de différence fondamentale dans les principes de base des mesurages en physique, chimie, biologie médicale, biologie ou sciences de l'ingénieur. De plus, on a essayé de couvrir les besoins conceptuels des mesurages dans des domaines tels que la biochimie, la science des aliments, l'expertise médicolégale et la biologie moléculaire.

Plusieurs concepts qui apparaissaient dans la deuxième édition du VIM n'apparaissent pas dans la troisième édition car il ne sont plus considérés comme étant fondamentaux ou généraux. Par exemple, le concept de temps de réponse, utilisé pour décrire le comportement temporel d'un système de mesure, n'est pas inclus. Pour des concepts relatifs aux dispositifs de mesure qui ne figurent pas dans cette troisième édition du VIM, le lecteur pourra se reporter à d'autres vocabulaires comme la CEI 60050, *Vocabulaire électrotechnique international*, VEI. Pour ceux se rapportant à la gestion de la qualité, aux arrangements de reconnaissance mutuelle ou à la métrologie légale, le lecteur se reportera à la bibliographie.

Le développement de cette troisième édition du VIM a soulevé quelques questions fondamentales, résumées ci-dessous, concernant différentes approches utilisées pour la description des mesurages. Ces différences ont parfois rendu difficile le développement de définitions compatibles avec les différentes descriptions. Dans cette troisième édition, les différentes approches sont traitées sur un pied d'égalité.

Le changement dans le traitement de l'incertitude de mesure, d'une approche «erreur» (quelquefois appelée approche traditionnelle ou approche de la valeur vraie) à une approche «incertitude», a conduit à reconsidérer certains des concepts correspondants qui figuraient dans la deuxième édition du VIM. L'objectif des mesurages dans l'approche «erreur» est de déterminer une estimation de la valeur vraie qui soit aussi proche que possible de cette valeur vraie unique. L'écart par rapport à la valeur vraie est constitué d'erreurs aléatoires et systématiques. Les deux types d'erreurs, que l'on admet pouvoir toujours distinguer, doivent être traitées différemment. On ne peut pas établir de règle indiquant comment les combiner pour obtenir l'erreur totale caractérisant un résultat de mesure donné, celui-ci étant en général l'estimation. En général il est seulement possible d'estimer une limite supérieure de la valeur absolue de l'erreur totale, appelée parfois abusivement «incertitude».

La Recommandation INC-1 (1980) du CIPM sur l'expression des incertitudes suggère que les composantes de l'incertitude de mesure soient groupées en deux catégories, Type A et Type B, selon qu'elles sont évaluées par des méthodes statistiques ou par d'autres méthodes, et qu'elles soient combinées pour obtenir une variance conformément aux règles de la théorie mathématique des probabilités, en traitant aussi les composantes de Type B en termes de variances. L'écart-type qui en résulte est une expression de l'incertitude de mesure. Une description de l'approche «incertitude» a été détaillée dans le *Guide pour l'expression de l'incertitude de mesure (GUM)* (1993, corrigé en 1995), qui met l'accent sur le traitement mathématique de l'incertitude à l'aide d'un modèle de mesure explicite supposant que le mesurande puisse être caractérisé par une valeur par essence unique. De plus, dans le GUM aussi bien que dans les documents de la CEI, des indications sont données sur l'approche «incertitude» dans le cas d'une lecture unique d'un instrument étalonné, une situation qui se rencontre couramment en métrologie industrielle.

L'objectif des mesurages dans l'approche «incertitude» n'est pas de déterminer une valeur vraie le mieux possible. On suppose plutôt que l'information obtenue lors d'un mesurage permet seulement d'attribuer au mesurande un intervalle de valeurs raisonnables, en supposant que le mesurage a été effectué correctement.

Des informations additionnelles pertinentes peuvent réduire l'étendue de l'intervalle des valeurs qui peuvent être attribuées raisonnablement au mesurande. Cependant, même le mesurage le plus raffiné ne peut réduire l'intervalle à une seule valeur à cause de la quantité finie de détails dans la définition d'un mesurande. L'incertitude définitionnelle impose donc une limite inférieure à toute incertitude de mesure. L'intervalle peut être représenté par une de ses valeurs, appelée «valeur mesurée».

Dans le GUM, l'incertitude définitionnelle est supposée négligeable par rapport aux autres composantes de l'incertitude de mesure. L'objectif des mesurages est alors d'établir une probabilité que la valeur par essence unique soit à l'intérieur d'un intervalle de valeurs mesurées, en se fondant sur l'information obtenue lors des mesurages.

Les documents de la CEI mettent l'accent sur des mesurages comportant une seule lecture, qui permettent d'étudier si des grandeurs varient en fonction du temps par détermination de la compatibilité des résultats de mesure. La CEI traite aussi le cas d'incertitudes définitionnelles non négligeables. La validité des résultats de mesure dépend grandement des propriétés métrologiques de l'instrument, déterminées lors de son étalonnage. L'intervalle des valeurs attribuées au mesurande est l'intervalle des valeurs des étalons qui auraient donné les mêmes indications.

Dans le GUM, le concept de valeur vraie est retenu pour décrire l'objectif des mesurages, mais l'adjectif «vraie» est considéré comme étant redondant. La CEI n'utilise pas le concept pour décrire cet objectif. Dans le présent Vocabulaire, le concept et le terme sont retenus, compte tenu de leur usage fréquent et de l'importance du concept.

Conventions

Terminology rules

The definitions and terms given in this third edition, as well as their formats, comply as far as possible with the rules of terminology work, as outlined in ISO 704, ISO 1087-1 and ISO 10241. In particular, the substitution principle applies; that is, it is possible in any definition to replace a term referring to a concept defined elsewhere in the VIM by the definition corresponding to that term, without introducing contradiction or circularity.

Concepts are listed in five chapters and in logical order in each chapter.

In some definitions, the use of non-defined concepts (also called "primitives") is unavoidable. In this Vocabulary, such non-defined concepts include: system, component, phenomenon, body, substance, property, reference, experiment, examination, magnitude, material, device, and signal.

To facilitate the understanding of the different relations between the various concepts given in this Vocabulary, concept diagrams have been introduced. They are given in Annex A.

Reference number

Concepts appearing in both the second and third editions have a double reference number; the third edition reference number is printed in bold face, and the earlier reference from the second edition is given in parentheses and in light font.

Synonyms

Multiple terms for the same concept are permitted. If more than one term is given, the first term is the preferred one, and it is used throughout as far as possible.

Bold face

Terms used for a concept to be defined are printed in **bold face**. In the text of a given entry, terms of concepts defined elsewhere in the VIM are also printed in **bold face** the first time they appear.

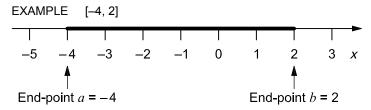
Quotation marks

In the English text of this document, single quotation marks ('...') surround the term representing a concept unless it is in bold. Double quotation marks ("...") are used when only the term is considered, or for a quotation. In the French text, quotation marks («...») are used for quotations, or to highlight a word or a group of words.

Decimal sign

The decimal sign in the English text is the point on the line, and the comma on the line is the decimal sign in the French text.

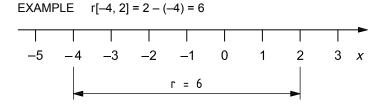
French terms "mesure" and "mesurage" ("measurement")


The French word "mesure" has several meanings in everyday French language. For this reason, it is not used in this Vocabulary without further qualification. It is for the same reason that the French word "mesurage" has been introduced to describe the act of measurement. Nevertheless, the French word "mesure" occurs many times in forming terms in this Vocabulary, following current usage, and without ambiguity. Examples are: instrument de mesure, appareil de mesure, unité de mesure, méthode de mesure. This does not mean that the use of the French word "mesurage" in place of "mesure" in such terms is not permissible when advantageous.

Equal-by-definition symbol

The symbol := denotes "is by definition equal to" as given in the ISO 80000 and IEC 80000 series.

Interval


The term "interval" is used together with the symbol [a, b] to denote the set of real numbers x for which $a \le x \le b$, where a and b > a are real numbers. The term "interval" is used here for 'closed interval'. The symbols a and b denote the 'end-points' of the interval [a, b].

The two end-points 2 and -4 of the interval [-4, 2] can be stated as -1 ± 3 . The latter expression does not denote the interval [-4, 2]. Nevertheless, -1 ± 3 is often used to denote the interval [-4, 2].

Range of interval Range

The range of the interval [a, b] is the difference b - a and is denoted by r[a, b].

NOTE The term "span" is sometimes used for this concept.

Conventions

Règles terminologiques

Les définitions et termes donnés dans cette troisième édition, ainsi que leurs formats, sont conformes autant que possible aux règles de terminologie exposées dans l'ISO 704, l'ISO 1087-1 et l'ISO 10241. En particulier le principe de substitution s'applique: il est possible dans toute définition de remplacer un terme désignant un concept défini ailleurs dans le VIM par la définition correspondante, sans introduire de contradiction ou de circularité.

Les concepts sont répartis en cinq chapitres et présentés dans un ordre logique dans chaque chapitre.

Dans certaines définitions, l'utilisation de concepts non définis (aussi appelés des concepts «premiers») est inévitable. Dans ce Vocabulaire, on trouve parmi eux: système, composante ou constituant, phénomène, corps, substance, propriété, référence, expérience, examen, quantitatif, matériel, dispositif, signal.

Pour faciliter la compréhension des différentes relations entre les concepts définis dans ce Vocabulaire, des schémas conceptuels ont été introduits. Ils sont donnés dans l'Annexe A.

Numéro de référence

Les concepts figurant à la fois dans la seconde et la troisième éditions ont un double numéro de référence. Le numéro de référence de la troisième édition est imprimé en gras, le numéro antérieur de la seconde édition est placé entre parenthèses en maigre.

Synonymes

Plusieurs termes sont autorisés pour un même concept. S'il y a plusieurs termes, le premier est le terme privilégié et est celui qui sera utilisé ailleurs dans le VIM dans la mesure du possible.

Caractères gras

Les termes désignant un concept à définir sont imprimés en **gras**. Dans le texte d'un article donné, les termes correspondant à des concepts définis ailleurs dans le VIM sont aussi imprimés en **gras** à leur première apparition.

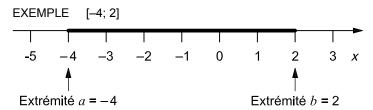
Guillemets

Dans le texte anglais du présent document, un terme représentant un concept est placé entre marques simples ('...') sauf s'il est en gras. Des marques doubles ("...") sont utilisées lorsque seul le terme est considéré ou pour une citation. Dans le texte français, les guillemets («...») sont employés pour les citations ou pour mettre en évidence un mot ou un groupe de mots.

Signe décimal

Le signe décimal est le point sur la ligne dans le texte anglais, la virgule sur la ligne dans le texte français.

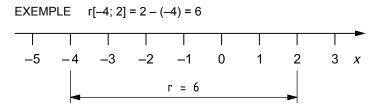
Mesure et mesurage


Le mot «mesure» a, dans la langue française courante, plusieurs significations. Aussi n'est-il pas employé seul dans le présent Vocabulaire. C'est également la raison pour laquelle le mot «mesurage» a été introduit pour qualifier l'action de mesurer. Le mot «mesure» intervient cependant à de nombreuses reprises pour former des termes de ce Vocabulaire, suivant en cela l'usage courant et sans ambiguïté. On peut citer, par exemple: instrument de mesure, appareil de mesure, unité de mesure, méthode de mesure. Cela ne signifie pas que l'utilisation du mot «mesurage» au lieu de «mesure» pour ces termes ne soit pas admissible si l'on y trouve quelque avantage.

Symbole d'égalité par définition

Le symbole := signifie «est par définition égal à», comme indiqué dans les séries ISO 80000 et CEI 80000.

Intervalle


Le terme «intervalle» et le symbole [a;b] sont utilisés pour désigner l'ensemble des nombres réels x tels que $a \le x \le b$, où a et b > a sont des nombres réels. Le terme «intervalle» est utilisé ici pour «intervalle fermé». Les symboles a et b notent les extrémités de l'intervalle [a;b].

Les deux extrémités 2 et -4 de l'intervalle [-4; 2] peuvent être notées -1 ± 3 . Cette dernière expression ne désigne pas l'intervalle [-4; 2]. Cependant, -1 ± 3 est souvent utilisé pour désigner l'intervalle [-4; 2].

Étendue d'un intervalle Étendue

L'étendue de l'intervalle [a; b] est la différence b - a, notée r[a; b].

NOTE En anglais, le terme «span» est parfois utilisé.

International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

3rd edition

Vocabulaire international de métrologie — Concepts fondamentaux et généraux et termes associés (VIM)

3^e édition

Scope

In this Vocabulary, a set of definitions and associated terms is given, in English and French, for a system of basic and general concepts used in metrology, together with concept diagrams to demonstrate their relations. Additional information is given in the form of examples and notes under many definitions.

This Vocabulary is meant to be a common reference for scientists and engineers — including physicists, chemists, medical scientists — as well as for both teachers and practitioners involved in planning or performing measurements, irrespective of the level of measurement uncertainty and irrespective of the field of application. It is also meant to be a reference for governmental and intergovernmental bodies, trade associations, accreditation bodies, regulators, and professional societies.

Concepts used in different approaches to describing measurement are presented together. The member organizations of the JCGM can select the concepts and definitions in accordance with their respective terminologies. Nevertheless, this Vocabulary is intended to promote global harmonization of terminology used in metrology.

Domaine d'application

Ce Vocabulaire donne un ensemble de définitions et de termes associés, en anglais et en français, pour un système de concepts fondamentaux et généraux utilisés en métrologie, ainsi que des schémas conceptuels illustrant leurs relations. Pour un grand nombre de définitions, des informations complémentaires sont données sous forme d'exemples et de notes.

Ce Vocabulaire se propose d'être une référence commune pour les scientifiques et les ingénieurs — y compris les physiciens, chimistes et biologistes médicaux — ainsi que pour les enseignants et praticiens, impliqués dans la planification ou la réalisation de mesurages, quels que soient le domaine d'application et le niveau d'incertitude de mesure. Il se propose aussi d'être une référence pour les organismes gouvernementaux et intergouvernementaux, les associations commerciales, les comités d'accréditation, les régulateurs et les associations professionnelles.

Les concepts utilisés dans les différentes approches de la description des mesurages sont présentés ensemble. Les organisations membres du JCGM peuvent sélectionner les concepts et définitions en accord avec leurs terminologies respectives. Néanmoins, ce Vocabulaire vise à la promotion d'une harmonisation globale de la terminologie utilisée en métrologie.

1 Quantities and units

1.1 (1.1) quantity

property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference

NOTE 1 The generic concept 'quantity' can be divided into several levels of specific concepts, as shown in the following table. The left hand side of the table shows specific concepts under 'quantity'. These are generic concepts for the individual quantities in the right hand column

1 Grandeurs et unités

1.1 (1.1) grandeur, f

propriété d'un phénomène, d'un corps ou d'une substance, que l'on peut exprimer quantitativement sous forme d'un nombre et d'une référence

NOTE 1 Le concept générique de grandeur peut être subdivisé en plusieurs niveaux de concepts spécifiques, comme indiqué dans le tableau suivant. La moitié gauche du tableau présente des concepts spécifiques du concept de grandeur. Ce sont des concepts génériques pour les grandeurs individuelles de la moitié droite.

length, <i>l</i> radius, <i>r</i>		radius of circle A, r_A or $r(A)$	
longueur, l rayon, r wavelength, λ		rayon du cercle A, r_A ou $r(A)$	
		wavelength of the sodium D radiation, λ_{D} or $\lambda(D; Na)$	
longueur d'onde, λ		longueur d'onde de la radiation D du sodium, λ_{D} ou $\lambda(D;Na)$	
energy, E	kinetic energy, T	kinetic energy of particle i in a given system, T_i	
énergie, E	énergie cinétique, T	énergie cinétique de la particule i dans un système donné, T_i	
heat, Q		heat of vaporization of sample i of water, Q_i	
	chaleur, Q	chaleur de vaporisation du spécimen i d'eau, Q_i	
electric charge, Q	2	electric charge of the proton, e	
charge électrique	e, Q	charge électrique du proton, e	
electric resistance, R		electric resistance of resistor i in a given circuit, R_i	
résistance électri	que, R	résistance électrique de la résistance i dans un circuit donné, R_i	
amount-of-substance concentration of		amount-of-substance concentration of ethanol in wine sample $i, c_i(C_2H_5OH)$	
entity B, $c_{\rm B}$		concentration en quantité de matière d'éthanol dans le spécimen i de vin,	
concentration en quantité de matière du constituant B, c_{B}		$c_i(C_2H_5OH)$	
number concentration of entity B, C_{B}		number concentration of erythrocytes in blood sample i , $C(Erys; B_i)$	
nombre volumique du constituant B, C_{B}		nombre volumique d'érythrocytes dans le spécimen i de sang, $C(Erc; Sg_i)$	
Rockwell C hardness, HRC		Rockwell C hardness of steel sample i, HRC _i	
dureté C de Rockwell, HRC		dureté C de Rockwell du spécimen i d'acier, HRCi	

NOTE 2 A reference can be a **measurement unit**, a **measurement procedure**, a **reference material**, or a combination of such.

NOTE 3 Symbols for quantities are given in the ISO 80000 and IEC 80000 series *Quantities and units*. The symbols for quantities are written in italics. A given symbol can indicate different quantities.

NOTE 4 The preferred IUPAC-IFCC format for designations of quantities in laboratory medicine is "System—Component; kind-of-quantity".

NOTE 2 La référence peut être une **unité de mesure**, une **procédure de mesure**, un **matériau de référence**, ou une de leurs combinaisons.

NOTE 3 Les séries ISO 80000 et CEI 80000 Grandeurs et unités donnent des symboles de grandeurs. Les symboles de grandeurs sont écrits en italique. Un symbole donné peut noter des grandeurs différentes.

NOTE 4 Le format préféré par l'UICPA-IFCC pour la désignation des grandeurs dans les laboratoires de biologie médicale est «Système—Constituant; nature-degrandeur».

EXAMPLE "Plasma (Blood)—Sodium ion; amountof-substance concentration equal to 143 mmol/l in a given person at a given time".

NOTE 5 A quantity as defined here is a scalar. However, a vector or a tensor, the components of which are quantities, is also considered to be a quantity.

NOTE 6 The concept 'quantity' may be generically divided into, e.g. 'physical quantity', 'chemical quantity', and 'biological quantity', or **base quantity** and **derived quantity**.

1.2 (1.1, Note 2) kind of quantity kind

aspect common to mutually comparable quantities

NOTE 1 The division of 'quantity' according to 'kind of quantity' is to some extent arbitrary.

EXAMPLE 1 The quantities diameter, circumference, and wavelength are generally considered to be quantities of the same kind, namely of the kind of quantity called length.

EXAMPLE 2 The quantities heat, kinetic energy, and potential energy are generally considered to be quantities of the same kind, namely of the kind of quantity called energy.

NOTE 2 Quantities of the same kind within a given system of quantities have the same quantity dimension. However, quantities of the same dimension are not necessarily of the same kind.

EXAMPLE The quantities moment of force and energy are, by convention, not regarded as being of the same kind, although they have the same dimension. Similarly for heat capacity and entropy, as well as for number of entities, relative permeability, and mass fraction.

NOTE 3 In English, the terms for quantities in the left half of the table in 1.1, Note 1, are often used for the corresponding 'kinds of quantity'. In French, the term "nature" is only used in expressions such as "grandeurs de même nature" (in English, "quantities of the same kind").

1.3 (1.2) system of quantities

set of **quantities** together with a set of noncontradictory equations relating those quantities

NOTE **Ordinal quantities**, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only.

EXEMPLE «Plasma (Sang)—lon sodium; concentration en quantité de matière égale à 143 mmol/l chez une personne donnée à un instant donné».

NOTE 5 Une grandeur telle que définie ici est une grandeur scalaire. Cependant, un vecteur ou un tenseur dont les composantes sont des grandeurs est aussi considéré comme une grandeur.

NOTE 6 Le concept de grandeur peut être subdivisé génériquement, par exemple «grandeur physique», «grandeur chimique» et «grandeur biologique», ou grandeur de base et grandeur dérivée.

1.2 (1.1, Note 2) nature de grandeur, f nature, f

aspect commun à des **grandeurs** mutuellement comparables

NOTE 1 La répartition des grandeurs selon leur nature est dans une certaine mesure arbitraire.

EXEMPLE 1 Les grandeurs diamètre, circonférence et longueur d'onde sont généralement considérées comme des grandeurs de même nature, à savoir la nature de la longueur.

EXEMPLE 2 Les grandeurs chaleur, énergie cinétique et énergie potentielle sont généralement considérées comme des grandeurs de même nature, à savoir la nature de l'énergie.

NOTE 2 Les grandeurs de même nature dans un système de grandeurs donné ont la même dimension. Cependant des grandeurs de même dimension ne sont pas nécessairement de même nature.

EXEMPLE On ne considère pas, par convention, les grandeurs moment d'une force et énergie comme étant de même nature, bien que ces grandeurs aient la même dimension. Il en est de même pour la capacité thermique et l'entropie, ainsi que pour un nombre d'entités, la perméabilité relative et la fraction massique.

NOTE 3 En français, le terme «nature» n'est employé que dans des expressions telles que «grandeurs de même nature» (en anglais «quantities of the same kind»). En anglais, les termes désignant les grandeurs de la moitié gauche du tableau en 1.1, Note 1, sont souvent employés pour désigner les «natures» correspondantes.

1.3 (1.2)

système de grandeurs, m

ensemble de **grandeurs** associé à un ensemble de relations non contradictoires entre ces grandeurs

NOTE Les **grandeurs ordinales**, telles que la dureté C de Rockwell, ne sont généralement pas considérées comme faisant partie d'un système de grandeurs, parce qu'elles ne sont reliées à d'autres grandeurs que par des relations empiriques.

1.4 (1.3)

base quantity

quantity in a conventionally chosen subset of a given **system of quantities**, where no subset quantity can be expressed in terms of the others

NOTE 1 The subset mentioned in the definition is termed the "set of base quantities".

EXAMPLE The set of base quantities in the **International System of Quantities (ISQ)** is given in 1.6.

NOTE 2 Base quantities are referred to as being mutually independent since a base quantity cannot be expressed as a product of powers of the other base quantities.

NOTE 3 'Number of entities' can be regarded as a base quantity in any system of quantities.

1.5 (1.4)

derived quantity

quantity, in a system of quantities, defined in terms of the base quantities of that system

EXAMPLE In a system of quantities having the base quantities length and mass, mass density is a derived quantity defined as the quotient of mass and volume (length to the third power).

1.6 International System of Quantities ISQ

system of quantities based on the seven **base quantities**: length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity

NOTE 1 This system of quantities is published in the ISO 80000 and IEC 80000 series *Quantities and units*.

NOTE 2 The International System of Units (SI) (see 1.16) is based on the ISQ.

1.7 (1.5)

quantity dimension dimension of a quantity dimension

expression of the dependence of a quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base quantities, omitting any numerical factor

EXAMPLE 1 In the **ISQ**, the quantity dimension of force is denoted by dim $F = LMT^{-2}$.

1.4 (1.3)

grandeur de base, f

grandeur d'un sous-ensemble choisi par convention dans un **système de grandeurs** donné de façon à ce qu'aucune grandeur du sous-ensemble ne puisse être exprimée en fonction des autres

NOTE 1 Le sous-ensemble mentionné dans la définition est appelé l'ensemble des grandeurs de base.

EXEMPLE L'ensemble des grandeurs de base du **Système international de grandeurs (ISQ)** est donné en 1.6.

NOTE 2 Les grandeurs de base sont considérées comme mutuellement indépendantes puisqu'une grandeur de base ne peut être exprimée par un produit de puissances des autres grandeurs de base.

NOTE 3 On peut considérer la grandeur «nombre d'entités» comme une grandeur de base dans tout système de grandeurs.

1.5 (1.4)

grandeur dérivée, f

grandeur définie, dans un système de grandeurs, en fonction des grandeurs de base de ce système

EXEMPLE Dans un système de grandeurs ayant pour grandeurs de base la longueur et la masse, la masse volumique est une grandeur dérivée définie comme le quotient d'une masse par un volume (longueur au cube).

1.6

Système international de grandeurs, m ISQ, m

système de grandeurs fondé sur les sept grandeurs de base: longueur, masse, temps, courant électrique, température thermodynamique, quantité de matière, intensité lumineuse

NOTE 1 Ce système de grandeurs est publié dans les séries ISO 80000 et CEI 80000 *Grandeurs et unités*.

NOTE 2 Le **Système international d'unités (SI)** (voir 1.16) est fondé sur l'ISQ.

1.7 (1.5)

dimension, f

dimension d'une grandeur, f

expression de la dépendance d'une **grandeur** par rapport aux **grandeurs de base** d'un **système de grandeurs** sous la forme d'un produit de puissances de facteurs correspondant aux grandeurs de base, en omettant tout facteur numérique

EXEMPLE 1 Dans l'**ISQ**, la dimension de la force est notée dim $F = LMT^{-2}$.

EXAMPLE 2 In the same system of quantities, $\dim \rho_B = ML^{-3}$ is the quantity dimension of mass concentration of component B, and ML^{-3} is also the quantity dimension of mass density, ρ , (volumic mass).

EXAMPLE 3 The period T of a pendulum of length l at a place with the local acceleration of free fall g is

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 or $T = C(g)\sqrt{l}$

where
$$C(g) = \frac{2\pi}{\sqrt{g}}$$

Hence dim $C(g) = L^{-1/2}T$.

NOTE 1 A power of a factor is the factor raised to an exponent. Each factor is the dimension of a base quantity.

NOTE 2 The conventional symbolic representation of the dimension of a base quantity is a single upper case letter in roman (upright) sans-serif type. The conventional symbolic representation of the dimension of a **derived quantity** is the product of powers of the dimensions of the base quantities according to the definition of the derived quantity. The dimension of a quantity Q is denoted by Q.

NOTE 3 In deriving the dimension of a quantity, no account is taken of its scalar, vector, or tensor character.

NOTE 4 In a given system of quantities,

- quantities of the same kind have the same quantity dimension,
- quantities of different quantity dimensions are always of different kinds, and
- quantities having the same quantity dimension are not necessarily of the same kind.

NOTE 5 Symbols representing the dimensions of the base quantities in the ISQ are:

EXEMPLE 2 Dans le même système de grandeurs, dim $\rho_{\rm B}$ = ML⁻³ est la dimension de la concentration en masse du constituant B, et ML⁻³ est aussi la dimension de la masse volumique, ρ .

EXEMPLE 3 La période T d'un pendule de longueur l en un endroit où l'accélération locale de la pesanteur vaut ϱ est

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 ou $T = C(g)\sqrt{l}$

où
$$C(g) = \frac{2\pi}{\sqrt{g}}$$

Par conséquent, dim $C(g) = L^{-1/2}T$.

NOTE 1 Une puissance d'un facteur est le facteur muni d'un exposant. Chaque facteur exprime la dimension d'une grandeur de base.

NOTE 2 Par convention, la représentation symbolique de la dimension d'une grandeur de base est une lettre majuscule unique en caractère romain (droit) sans empattement. Par convention, la représentation symbolique de la dimension d'une **grandeur dérivée** est le produit de puissances des dimensions des grandeurs de base conformément à la définition de la grandeur dérivée. La dimension de la grandeur Q est notée dim Q.

NOTE 3 Pour établir la dimension d'une grandeur, on ne tient pas compte du caractère scalaire, vectoriel ou tensoriel.

NOTE 4 Dans un système de grandeurs donné,

- les grandeurs de même nature ont la même dimension,
- des grandeurs de dimensions différentes sont toujours de nature différente,
- des grandeurs ayant la même dimension ne sont pas nécessairement de même nature.

NOTE 5 Dans l'ISQ, les symboles correspondant aux dimensions des grandeurs de base sont:

Base quantity Grandeur de base	Symbol for dimension Symbole de la dimension
length longueur	L
mass masse	М
time temps	Т
electric current courant électrique	ſ
thermodynamic temperature température thermodynamique	Θ
amount of substance quantité de matière	N
luminous intensity intensité lumineuse	J

Thus, the dimension of a quantity Q is denoted by dim $Q = L^{\alpha} M^{\beta} T^{\gamma} I^{\delta} \Theta^{\varepsilon} N^{\zeta} J^{\eta}$ where the exponents, named dimensional exponents, are positive, negative, or zero.

La dimension d'une grandeur Q est donc notée dim $Q = \mathsf{L}^\alpha \mathsf{M}^\beta \mathsf{T}^\gamma \mathsf{I}^\delta \Theta^\varepsilon \mathsf{N}^\zeta \mathsf{J}^\eta$ où les exposants, appelés exposants dimensionnels, sont positifs, négatifs ou nuls.

1.8 (1.6)

quantity of dimension one dimensionless quantity

quantity for which all the exponents of the factors corresponding to the base quantities in its quantity dimension are zero

The "dimensionless quantity" term commonly used and is kept here for historical reasons. It stems from the fact that all exponents are zero in the symbolic representation of the dimension for such quantities. The term "quantity of dimension one" reflects the convention in which the symbolic representation of the dimension for such quantities is the symbol 1 (see ISO 31-0:1992, 2.2.6).

NOTE 2 The measurement units and values of quantities of dimension one are numbers, but such quantities convey more information than a number.

NOTE 3 Some quantities of dimension one are defined as the ratios of two quantities of the same kind.

EXAMPLES Plane angle, solid angle, refractive index, relative permeability, mass fraction, friction factor. Mach number.

NOTE 4 Numbers of entities are quantities of dimension one.

EXAMPLES Number of turns in a coil, number of molecules in a given sample, degeneracy of the energy levels of a quantum system.

1.9 (1.7) measurement unit unit of measurement unit

real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the two quantities as a number

NOTE 1 Measurement units are designated conventionally assigned names and symbols.

NOTE 2 Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. However, in some cases special measurement unit names are restricted to be used with quantities of a specific kind only. For example,

1.8 (1.6)

grandeur sans dimension, f grandeur de dimension un, f

grandeur pour laquelle tous les exposants des facteurs correspondant aux grandeurs de base dans sa dimension sont nuls

NOTE 1 Le terme «grandeur sans dimension» est d'usage courant en français. Il provient du fait que tous les exposants sont nuls dans la représentation symbolique de la dimension de telles grandeurs. Le terme «grandeur de dimension un» reflète la convention selon laquelle la représentation symbolique de la dimension de telles grandeurs est le symbole 1 (voir l'ISO 31-0:1992, 2.2.6).

Les unités de mesure et les valeurs des NOTF 2 grandeurs sans dimension sont des nombres, mais ces grandeurs portent plus d'information qu'un nombre.

Certaines grandeurs sans dimension sont définies comme des rapports de deux grandeurs de même nature.

EXEMPLES Angle plan, angle solide, indice de réfraction, perméabilité relative, fraction massique, facteur de frottement, nombre de Mach.

NOTE 4 Les nombres d'entités sont des grandeurs sans dimension.

EXEMPLES Nombre de tours dans une bobine, nombre de molécules dans un spécimen donné, dégénérescence des niveaux d'énergie d'un système quantique.

1.9 (1.7)

unité de mesure, f

unité. f

grandeur scalaire réelle, définie et adoptée par convention, à laquelle on peut comparer toute autre grandeur de même **nature** pour exprimer le rapport des deux grandeurs sous la forme d'un nombre

On désigne les unités de mesure par des noms et des symboles attribués par convention.

NOTE 2 Les unités des grandeurs de même dimension peuvent être désignées par le même nom et le même symbole même si ces grandeurs ne sont pas de même nature. On emploie, par exemple, le nom «joule par kelvin» et le symbole J/K pour désigner à la fois une unité de capacité thermique et une unité d'entropie, bien que ces grandeurs ne soient généralement pas considérées comme étant de même nature. Toutefois, dans certains cas, des noms spéciaux sont utilisés exclusivement pour des grandeurs d'une nature spécifiée. C'est ainsi que l'unité seconde à la puissance moins un the measurement unit 'second to the power minus one' (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides.

NOTE 3 Measurement units of **quantities of dimension one** are numbers. In some cases these measurement units are given special names, e.g. radian, steradian, and decibel, or are expressed by quotients such as millimole per mole equal to 10^{-3} and microgram per kilogram equal to 10^{-9} .

NOTE 4 For a given quantity, the short term "unit" is often combined with the quantity name, such as "mass unit" or "unit of mass".

1.10 (1.13)

base unit

measurement unit that is adopted by convention for a **base quantity**

NOTE 1 In each **coherent system of units**, there is only one base unit for each base quantity.

EXAMPLE In the **SI**, the metre is the base unit of length. In the CGS systems, the centimetre is the base unit of length.

NOTE 2 A base unit may also serve for a **derived quantity** of the same **quantity dimension**.

EXAMPLE Rainfall, when defined as areic volume (volume per area), has the metre as a **coherent derived unit** in the SI.

NOTE 3 For number of entities, the number one, symbol 1, can be regarded as a base unit in any **system** of units.

1.11 (1.14)

derived unit

measurement unit for a derived quantity

EXAMPLES The metre per second, symbol m/s, and the centimetre per second, symbol cm/s, are derived units of speed in the SI. The kilometre per hour, symbol km/h, is a measurement unit of speed outside the SI but accepted for use with the SI. The knot, equal to one nautical mile per hour, is a measurement unit of speed outside the SI.

1.12 (1.10)

coherent derived unit

derived unit that, for a given **system of quantities** and for a chosen set of **base units**, is a product of powers of base units with no other proportionality factor than one

(1/s) est appelée hertz (Hz) pour les fréquences et becquerel (Bq) pour les activités de radionucléides.

NOTE 3 Les unités des **grandeurs sans dimension** sont des nombres. Dans certains cas, on leur donne des noms spéciaux, par exemple radian, stéradian et décibel, ou on les exprime par des quotients comme la millimole par mole égale à 10^{-3} , et le microgramme par kilogramme égal à 10^{-9} .

NOTE 4 Pour une grandeur donnée, le nom abrégé «unité» est souvent combiné avec le nom de la grandeur, par exemple «unité de masse».

1.10 (1.13)

unité de base, f

unité de mesure adoptée par convention pour une grandeur de base

NOTE 1 Dans chaque **système cohérent d'unités**, il y a une seule unité de base pour chaque grandeur de base.

EXEMPLE Dans le **SI**, le mètre est l'unité de base de longueur. Dans les systèmes CGS, le centimètre est l'unité de base de longueur.

NOTE 2 Une unité de base peut aussi servir pour une **grandeur dérivée** de même **dimension**.

EXEMPLE La hauteur de pluie, définie comme un volume surfacique (volume par aire) a le mètre comme unité dérivée cohérente dans le SI.

NOTE 3 Pour un nombre d'entités, on peut considérer le nombre un, de symbole 1, comme une unité de base dans tout **système d'unités**.

1.11 (1.14)

unité dérivée, f

unité de mesure d'une grandeur dérivée

EXEMPLES Le mètre par seconde, symbole m/s, et le centimètre par seconde, symbole cm/s, sont des unités dérivées de vitesse dans le SI. Le kilomètre par heure, symbole km/h, est une unité de vitesse en dehors du SI mais dont l'usage est accepté avec le SI. Le nœud, égal à un mille marin par heure, est une unité de vitesse en dehors du SI.

1.12 (1.10)

unité dérivée cohérente, f

unité dérivée qui, pour un système de grandeurs donné et pour un ensemble choisi d'unités de base, est un produit de puissances des unités de base sans autre facteur de proportionnalité que le nombre un NOTE 1 A power of a base unit is the base unit raised to an exponent.

NOTE 2 Coherence can be determined only with respect to a particular system of quantities and a given set of base units.

EXAMPLES If the metre, the second, and the mole are base units, the metre per second is the coherent derived unit of velocity when velocity is defined by the **quantity equation** v = dr/dt, and the mole per cubic metre is the coherent derived unit of amount-of-substance concentration when amount-of-substance concentration is defined by the quantity equation c = n/V. The kilometre per hour and the knot, given as examples of derived units in 1.11, are not coherent derived units in such a system of quantities.

NOTE 3 A derived unit can be coherent with respect to one system of quantities but not to another.

EXAMPLE The centimetre per second is the coherent derived unit of speed in a CGS system of units but is not a coherent derived unit in the SI.

NOTE 4 The coherent derived unit for every derived **quantity of dimension one** in a given system of units is the number one, symbol 1. The name and symbol of the **measurement unit** one are generally not indicated.

1.13 (1.9) system of units

set of base units and derived units, together with their multiples and submultiples, defined in accordance with given rules, for a given system of quantities

1.14 (1.11)

coherent system of units

system of units, based on a given system of quantities, in which the measurement unit for each derived quantity is a coherent derived unit

EXAMPLE Set of coherent SI units and relations between them.

NOTE 1 A system of units can be coherent only with respect to a system of quantities and the adopted **base units**.

NOTE 2 For a coherent system of units, **numerical** value equations have the same form, including numerical factors, as the corresponding quantity equations.

NOTE 1 Une puissance d'une unité de base est l'unité munie d'un exposant.

NOTE 2 La cohérence ne peut être déterminée que par rapport à un système de grandeurs particulier et un ensemble donné d'unités de base.

EXEMPLES Si le mètre, la seconde et la mole sont des unités de base, le mètre par seconde est l'unité dérivée cohérente de vitesse lorsque la vitesse est définie par l'**équation aux grandeurs** $v = \mathrm{d} r/\mathrm{d} t$, et la mole par mètre cube est l'unité dérivée cohérente de concentration en quantité de matière lorsque la concentration en quantité de matière est définie par l'équation aux grandeurs c = n/V. Le kilomètre par heure et le nœud, donnés comme exemples d'unités dérivées en 1.11, ne sont pas des unités dérivées cohérentes dans un tel système.

NOTE 3 Une unité dérivée peut être cohérente par rapport à un système de grandeurs, mais non par rapport à un autre.

EXEMPLE Le centimètre par seconde est l'unité dérivée cohérente de vitesse dans le **système d'unités** CGS mais n'est pas une unité dérivée cohérente dans le **SI**.

NOTE 4 Dans tout système d'unités, l'unité dérivée cohérente de toute **grandeur dérivée sans dimension** est le nombre un, de symbole 1. Le nom et le symbole de l'**unité de mesure** un sont généralement omis.

1.13 (1.9)

système d'unités, m

ensemble d'unités de base et d'unités dérivées, de leurs multiples et sous-multiples, définis conformément à des règles données, pour un système de grandeurs donné

1.14 (1.11)

système cohérent d'unités, m

système d'unités, fondé sur un système de grandeurs donné, dans lequel l'unité de mesure de chaque grandeur dérivée est une unité dérivée cohérente

EXEMPLE L'ensemble des unités SI cohérentes et les relations entre elles.

NOTE 1 Un système d'unités ne peut être cohérent que par rapport à un système de grandeurs et aux **unités de base** adoptées.

NOTE 2 Pour un système cohérent d'unités, les **équations aux valeurs numériques** ont la même forme, y compris les facteurs numériques, que les **équations aux grandeurs** correspondantes.

1.15 (1.15)

off-system measurement unit off-system unit

measurement unit that does not belong to a given system of units

EXAMPLE 1 The electronvolt (about 1.602 18×10^{-19} J) is an off-system measurement unit of energy with respect to the **SI**.

EXAMPLE 2 Day, hour, minute are off-system measurement units of time with respect to the SI.

1.16 (1.12)

International System of Units

system of units, based on the International System of Quantities, their names and symbols, including a series of prefixes and their names and symbols, together with rules for their use, adopted by the General Conference on Weights and Measures (CGPM)

NOTE 1 The SI is founded on the seven **base quantities** of the **ISQ** and the names and symbols of the corresponding **base units** that are contained in the following table.

1.15 (1.15)

unité hors système, f

unité de mesure qui n'appartient pas à un système d'unités donné

EXEMPLE 1 L'électronvolt (environ 1,602 18×10^{-19} J) est une unité d'énergie hors système pour le **SI**.

EXEMPLE 2 Le jour, l'heure, la minute sont des unités de temps hors système pour le SI.

1.16 (1.12)

Système international d'unités, m SI, m

système d'unités, fondé sur le Système international de grandeurs, comportant les noms et symboles des unités, une série de préfixes avec leurs noms et symboles, ainsi que des règles pour leur emploi, adopté par la Conférence générale des poids et mesures (CGPM)

NOTE 1 Le SI est fondé sur les sept **grandeurs de base** de l'**ISQ**. Les noms et les symboles des **unités de base** sont donnés dans le tableau suivant.

Base quantity Grandeur de base	Base unit Unité de base	
Name Nom	Name Nom	Symbol Symbole
length longueur	metre mètre	m
mass masse	kilogram kilogramme	kg
time temps	second seconde	S
electric current courant électrique	ampere ampère	Α
thermodynamic temperature température thermodynamique	kelvin kelvin	K
amount of substance quantité de matière	mole mole	mol
luminous intensity intensité lumineuse	candela candela	cd

NOTE 2 The base units and the **coherent derived units** of the SI form a coherent set, designated the "set of coherent SI units".

NOTE 3 For a full description and explanation of the International System of Units, see the current edition of the SI brochure published by the Bureau International des Poids et Mesures (BIPM) and available on the BIPM website.

NOTE 2 Les unités de base et les **unités dérivées cohérentes** du SI forment un ensemble cohérent, appelé «ensemble des unités SI cohérentes».

NOTE 3 Pour une description et une explication complètes du Système international d'unités, voir la dernière édition de la brochure du SI publiée par le Bureau international des poids et mesures (BIPM) et disponible sur le site internet du BIPM.

NOTE 4 In **quantity calculus**, the quantity 'number of entities' is often considered to be a base quantity, with the base unit one, symbol 1.

NOTE 5 The SI prefixes for **multiples of units** and **submultiples of units** are:

NOTE 4 En **algèbre des grandeurs**, la grandeur «nombre d'entités» est souvent considérée comme une grandeur de base, avec l'unité de base un, symbole 1.

NOTE 5 Les préfixes SI pour les **multiples** et **sous-multiples des unités** sont:

Factor	Prefix	
Facteur	Préfixe	
	Name	Symbol
	Nom	Symbole
10 ²⁴	yotta	Y
	yotta	
10 ²¹	zetta	Z
40	zetta	
10 ¹⁸	exa	E
45	exa	
10 ¹⁵	peta	Р
	péta	
10 ¹²	tera	Т
0	téra	_
10 ⁹	giga	G
	giga	
10 ⁶	mega	M
	méga	
10 ³	kilo	k
	kilo	
10 ²	hecto	h
	hecto	
10 ¹	deca	da
	déca	
10 ⁻¹	deci	d
	déci	
10-2	centi	С
	centi	
10 ⁻³	milli	m
	milli	
10 ⁻⁶	micro	μ
	micro	
10 ⁻⁹	nano	n
	nano	
10 ⁻¹²	pico	р
	pico	
10 ⁻¹⁵	femto	f
	femto	
10 ⁻¹⁸	atto	а
04	atto	
10 ⁻²¹	zepto	Z
10 ⁻²⁴	zepto	
10 ⁻²⁴	yocto	У
	yocto	

1.17 (1.16)

multiple of a unit

measurement unit obtained by multiplying a given measurement unit by an integer greater than one

EXAMPLE 1 The kilometre is a decimal multiple of the metre.

EXAMPLE 2 The hour is a non-decimal multiple of the second.

NOTE 1 SI prefixes for decimal multiples of SI base units and SI derived units are given in Note 5 of 1.16.

NOTE 2 SI prefixes refer strictly to powers of 10, and should not be used for powers of 2. For example, 1 kilobit should not be used to represent 1 024 bits (2¹⁰ bits), which is 1 kibibit.

Prefixes for binary multiples are:

1.17 (1.16)

multiple d'une unité, m

unité de mesure obtenue en multipliant une unité de mesure donnée par un entier supérieur à un

EXEMPLE 1 Le kilomètre est un multiple décimal du mètre.

EXEMPLE 2 L'heure est un multiple non décimal de la seconde.

NOTE 1 Les préfixes SI pour les multiples décimaux des **unités de base** et des **unités dérivées** du **SI** sont donnés à la Note 5 de 1.16.

NOTE 2 Les préfixes SI représentent strictement des puissances de 10 et il convient de ne pas les utiliser pour des puissances de 2. Par exemple, il convient de ne pas utiliser 1 kilobit pour représenter 1 024 bits (2¹⁰ bits), qui est 1 kilobit.

Les préfixes pour les multiples binaires sont:

Factor	Prefix	
Facteur	Préfixe	
	Name	Symbol
	Nom	Symbole
$(2^{10})^8$	yobi	Yi
	yobi	
$(2^{10})^7$	zebi	Zi
	zébi	
$(2^{10})^6$	exbi	Ei
	exbi	
$(2^{10})^5$	pebi	Pi
	pébi	
(2 ¹⁰) ⁴	tebi	Ti
	tébi	
$(2^{10})^3$	gibi	Gi
	gibi	
$(2^{10})^2$	mebi	Mi
	mébi	
$(2^{10})^1$	kibi	Ki
	kibi	

Source: IEC 80000-13. Source: CEI 80000-13.

1.18 (1.17)

submultiple of a unit

measurement unit obtained by dividing a given measurement unit by an integer greater than one

EXAMPLE 1 The millimetre is a decimal submultiple of the metre.

1.18 (1.17)

sous-multiple d'une unité, m

unité de mesure obtenue en divisant une unité de mesure donnée par un entier supérieur à un

EXEMPLE 1 Le millimètre est un sous-multiple décimal du mètre

EXAMPLE 2 For a plane angle, the second is a non-decimal submultiple of the minute.

NOTE SI prefixes for decimal submultiples of SI base units and SI derived units are given in Note 5 of 1.16.

1.19 (1.18)

quantity value

value of a quantity

value

number and reference together expressing magnitude of a **quantity**

EXAMPLE 1 Length of a given rod:

5.34 m or 534 cm

EXAMPLE 2 Mass of a given body:

0.152 kg or 152 g

EXAMPLE 3 Curvature of a given arc:

112 m⁻¹

EXAMPLE 4 Celsius temperature of a given sample:

−5 °C

EXAMPLE 5 Electric impedance of a given circuit element at a given frequency, where j is the imaginary unit:

 $(7 + 3j) \Omega$

EXAMPLE 6 Refractive index of a given sample of glass:

1.32

EXAMPLE 7 Rockwell C hardness of a given sample:

43.5 HRC

EXAMPLE 8 Mass fraction of cadmium in a given sample of copper:

 $3 \mu g/kg \text{ or } 3 \times 10^{-9}$

EXAMPLE 9 Molality of Pb²⁺ in a given sample of water:

1.76 µmol/kg

EXAMPLE 10 Arbitrary amount-of-substance concentration of lutropin in a given sample of human blood plasma (WHO International Standard 80/552 used as a calibrator):

5.0 IU/I, where "IU" stands for "WHO International Unit"

NOTE 1 According to the type of reference, a quantity value is either

- a product of a number and a measurement unit (see Examples 1, 2, 3, 4, 5, 8 and 9); the measurement unit one is generally not indicated for quantities of dimension one (see Examples 6 and 8), or
- a number and a reference to a measurement procedure (see Example 7), or
- a number and a reference material (see Example 10).

EXEMPLE 2 Pour l'angle plan, la seconde est un sous-multiple non décimal de la minute.

NOTE Les préfixes SI pour les sous-multiples décimaux des **unités de base** et des **unités dérivées** du SI sont donnés à la Note 5 de 1.16.

1.19 (1.18)

valeur d'une grandeur, f

valeur, f

ensemble d'un nombre et d'une référence constituant l'expression quantitative d'une **grandeur**

EXEMPLE 1 Longueur d'une tige donnée:

5,34 m ou 534 cm

EXEMPLE 2 Masse d'un corps donné:

0,152 kg ou 152 g

EXEMPLE 3 Courbure d'un arc donné:

112 m⁻¹

EXEMPLE 4 Température Celsius d'un spécimen donné:

-5 °C

EXEMPLE 5 Impédance électrique d'un élément de circuit donné à une fréquence donnée, où j est l'unité imaginaire:

 $(7 + 3j) \Omega$

EXEMPLE 6 Indice de réfraction d'un spécimen donné de verre:

1,32

EXEMPLE 7 Dureté C de Rockwell d'un spécimen donné:

43,5 HRC

EXEMPLE 8 Fraction massique de cadmium dans un spécimen donné de cuivre:

 $3 \mu g/kg \text{ ou } 3 \times 10^{-9}$

EXEMPLE 9 Molalité de Pb²⁺ dans un spécimen donné d'eau:

1,76 µmol/kg

EXEMPLE 10 Concentration arbitraire en quantité de matière de lutropine dans un spécimen donné de plasma sanguin humain en utilisant l'étalon international 80/552 de l'OMS:

5,0 UI/I, où «UI» signifie «unité internationale de l'OMS»

NOTE 1 Selon le type de référence, la valeur d'une grandeur est

- soit le produit d'un nombre et d'une unité de mesure (voir les Exemples 1, 2, 3, 4, 5, 8 et 9);
 l'unité un est généralement omise pour les grandeurs sans dimension (voir Exemples 6 et 8);
- soit un nombre et la référence à une procédure de mesure (voir Exemple 7);
- soit un nombre et un matériau de référence (voir Exemple 10).

NOTE 2 The number can be complex (see Example 5).

NOTE 3 A quantity value can be presented in more than one way (see Examples 1, 2 and 8).

NOTE 4 In the case of vector or tensor quantities, each component has a quantity value.

EXAMPLE Force acting on a given particle, e.g. in Cartesian components $(F_x; F_y; F_z) = (-31.5; 43.2; 17.0)$ N.

1.20 (1.21)

numerical quantity value numerical value of a quantity numerical value

number in the expression of a **quantity value**, other than any number serving as the reference

NOTE 1 For **quantities of dimension one**, the reference is a **measurement unit** which is a number and this is not considered as a part of the numerical quantity value.

EXAMPLE In an amount-of-substance fraction equal to 3 mmol/mol, the numerical quantity value is 3 and the unit is mmol/mol. The unit mmol/mol is numerically equal to 0.001, but this number 0.001 is not part of the numerical quantity value, which remains 3.

NOTE 2 For **quantities** that have a measurement unit (i.e. those other than **ordinal quantities**), the numerical value $\{Q\}$ of a quantity Q is frequently denoted $\{Q\} = Q/[Q]$, where [Q] denotes the measurement unit.

EXAMPLE For a quantity value of 5.7 kg, the numerical quantity value is $\{m\} = (5.7 \text{ kg})/\text{kg} = 5.7$. The same quantity value can be expressed as 5 700 g in which case the numerical quantity value $\{m\} = (5 700 \text{ g})/\text{g} = 5 700$.

1.21

quantity calculus

set of mathematical rules and operations applied to **quantities** other than **ordinal quantities**

NOTE In quantity calculus, **quantity equations** are preferred to **numerical value equations** because quantity equations are independent of the choice of **measurement units**, whereas numerical value equations are not (see ISO 31-0:1992, 2.2.2).

1.22

quantity equation

mathematical relation between quantities in a given system of quantities, independent of measurement units

NOTE 2 Le nombre peut être complexe (voir Exemple 5).

NOTE 3 La valeur d'une grandeur peut être représentée de plus d'une façon (voir Exemples 1, 2 et 8).

NOTE 4 Dans le cas de grandeurs vectorielles ou tensorielles, chaque composante a une valeur.

EXEMPLE Force agissant sur une particule donnée, par exemple en coordonnées cartésiennes $(F_x; F_y; F_z) = (-31,5; 43,2; 17,0) \text{ N}.$

1.20 (1.21)

valeur numérique, f

valeur numérique d'une grandeur, f

nombre dans l'expression de la valeur d'une grandeur, autre qu'un nombre utilisé comme référence

NOTE 1 Pour les **grandeurs sans dimension**, la référence est une **unité de mesure** qui est un nombre, et ce nombre n'est pas considéré comme faisant partie de la valeur numérique.

EXEMPLE Pour une fraction molaire égale à 3 mmol/mol, la valeur numérique est 3 et l'unité est mmol/mol. L'unité mmol/mol est numériquement égale à 0,001, mais ce nombre 0,001 ne fait pas partie de la valeur numérique qui reste 3.

NOTE 2 Pour les **grandeurs** qui ont une unité de mesure (c'est-à-dire autres que les **grandeurs ordinales**), la valeur numérique $\{Q\}$ d'une grandeur Q est fréquemment notée $\{Q\} = Q/[Q]$, où [Q] est le symbole de l'unité de mesure.

EXEMPLE Pour une valeur de 5,7 kg, la valeur numérique est $\{m\}$ = (5,7 kg)/kg = 5,7. La même valeur peut être exprimée comme 5 700 g et la valeur numérique est alors $\{m\}$ = (5 700 g)/g = 5 700.

1.21

algèbre des grandeurs, f

ensemble de règles et opérations mathématiques appliquées aux grandeurs autres que les grandeurs ordinales

NOTE En algèbre des grandeurs, les équations aux grandeurs sont préférées aux équations aux valeurs numériques car les premières, contrairement aux secondes, sont indépendantes du choix des unités de mesure (voir l'ISO 31-0:1992, 2.2.2).

1.22

équation aux grandeurs, f

relation d'égalité entre des **grandeurs** d'un **système de grandeurs** donné, indépendante des **unités de mesure**

EXAMPLE 1 $Q_1 = \zeta Q_2 Q_3$ where Q_1 , Q_2 and Q_3 denote different quantities, and where ζ is a numerical factor.

EXAMPLE 2 $T = (1/2) mv^2$ where T is the kinetic energy and v the speed of a specified particle of mass m.

EXAMPLE 3 n = It/F where n is the amount of substance of a univalent component, I is the electric current and t the duration of the electrolysis, and where F is the Faraday constant.

1.23

unit equation

mathematical relation between base units, coherent derived units or other measurement units

EXAMPLE 1 For the **quantities** in Example 1 of item 1.22, $[Q_1] = [Q_2] [Q_3]$ where, $[Q_1]$, $[Q_2]$, and $[Q_3]$ denote the measurement units of Q_1 , Q_2 , and Q_3 , respectively, provided that these measurement units are in a **coherent system of units**.

EXAMPLE 2 $J := kg m^2/s^2$, where, J, kg, m, and s are the symbols for the joule, kilogram, metre, and second, respectively. (The symbol := denotes "is by definition equal to" as given in the ISO 80000 and IEC 80000 series.)

EXAMPLE 3 1 km/h = (1/3.6) m/s.

1.24

conversion factor between units

ratio of two measurement units for quantities of the same kind

EXAMPLE km/m = 1000 and thus 1 km = 1000 m.

NOTE The measurement units may belong to different systems of units.

EXAMPLE 1 h/s = 3600 and thus 1 h = 3600 s.

EXAMPLE 2 (km/h)/(m/s) = (1/3.6) and thus 1 km/h = (1/3.6) m/s.

1.25

numerical value equation numerical quantity value equation

mathematical relation between numerical quantity values, based on a given quantity equation and specified measurement units

EXAMPLE 1 For the **quantities** in Example 1 in item 1.22, $\{Q_1\} = \mathcal{C}\{Q_2\}\{Q_3\}$, where $\{Q_1\}, \{Q_2\}$, and $\{Q_3\}$ denote the numerical values of Q_1 , Q_2 , and Q_3 , respectively, provided that they are expressed in either **base units** or **coherent derived units** or both.

EXEMPLE 1 $Q_1 = \zeta \, Q_2 \, Q_3$, où Q_1 , Q_2 et Q_3 représentent différentes grandeurs et où ζ est un facteur numérique.

EXEMPLE 2 $T = (1/2) mv^2$, où T est l'énergie cinétique et v la vitesse d'une particule spécifiée de masse m.

EXEMPLE 3 n = It/F, où n est la quantité de matière d'un composé univalent, I est le courant électrique et t la durée de l'électrolyse, et où F est la constante de Faraday.

1.23

équation aux unités, f

relation d'égalité entre des unités de base, des unités dérivées cohérentes ou d'autres unités de mesure

EXEMPLE 1 Pour les **grandeurs** données dans l'Exemple 1 de 1.22, $[Q_1] = [Q_2] [Q_3]$ où $[Q_1]$, $[Q_2]$ et $[Q_3]$ représentent respectivement les unités de Q_1 , Q_2 et Q_3 , pourvu que ces unités soient dans un **système cohérent** d'unités.

EXEMPLE 2 J := kg m²/s², où J, kg, m et s sont respectivement les symboles du joule, du kilogramme, du mètre et de la seconde. (Le symbole := signifie «est par définition égal à», comme indiqué dans les séries ISO 80000 et CEI 80000.)

EXEMPLE 3 1 km/h = (1/3,6) m/s.

1.24

facteur de conversion entre unités, m

rapport de deux **unités de mesure** correspondant à des **grandeurs** de même **nature**

EXEMPLE km/m = 1 000 et par conséquent 1 km = 1 000 m.

NOTE Les unités de mesure peuvent appartenir à des systèmes d'unités différents.

EXEMPLE 1 h/s = 3600 et par conséquent 1 h = 3600 s.

EXEMPLE 2 (km/h)/(m/s) = (1/3,6) et par conséquent 1 km/h = (1/3,6) m/s.

1.25

équation aux valeurs numériques, f

relation d'égalité entre des valeurs numériques, fondée sur une équation aux grandeurs donnée et des unités de mesure spécifiées

EXEMPLE 1 Pour les **grandeurs** données dans l'Exemple 1 de 1.22, $\{Q_1\} = \zeta \{Q_2\} \{Q_3\}$, où $\{Q_1\}$, $\{Q_2\}$ et $\{Q_3\}$ représentent respectivement les valeurs numériques de Q_1 , Q_2 et Q_3 lorsqu'elles sont exprimées en **unités de base** ou en **unités dérivées cohérentes** ou les deux.

EXAMPLE 2 In the quantity equation for kinetic energy of a particle, $T = (1/2) \ mv^2$, if $m = 2 \ kg$ and $v = 3 \ m/s$, then $\{T\} = (1/2) \times 2 \times 3^2$ is a numerical value equation giving the numerical value 9 of T in joules.

EXEMPLE 2 Pour l'équation de l'énergie cinétique d'une particule, $T = (1/2) \ mv^2$, si $m = 2 \ kg$ et $v = 3 \ m/s$, alors $\{T\} = (1/2) \times 2 \times 3^2$ est une équation aux valeurs numériques donnant la valeur numérique 9 pour T en joules.

1.26

ordinal quantity

quantity, defined by a conventional **measurement procedure**, for which a total ordering relation can be established, according to magnitude, with other quantities of the same **kind**, but for which no algebraic operations among those quantities exist

EXAMPLE 1 Rockwell C hardness.

EXAMPLE 2 Octane number for petroleum fuel.

EXAMPLE 3 Earthquake strength on the Richter scale.

EXAMPLE 4 Subjective level of abdominal pain on a scale from zero to five.

NOTE 1 Ordinal quantities can enter into empirical relations only and have neither **measurement units** nor **quantity dimensions**. Differences and ratios of ordinal quantities have no physical meaning.

NOTE 2 Ordinal quantities are arranged according to **ordinal quantity-value scales** (see 1.28).

1.27

quantity-value scale measurement scale

ordered set of **quantity values** of **quantities** of a given **kind of quantity** used in ranking, according to magnitude, quantities of that kind

EXAMPLE 1 Celsius temperature scale.

EXAMPLE 2 Time scale.

EXAMPLE 3 Rockwell C hardness scale.

1.28 (1.22)

ordinal quantity-value scale ordinal value scale

quantity-value scale for ordinal quantities

EXAMPLE 1 Rockwell C hardness scale.

EXAMPLE 2 Scale of octane numbers for petroleum fuel.

NOTE An ordinal quantity-value scale may be established by **measurements** according to a **measurement procedure**.

1.26

grandeur ordinale, f grandeur repérable, f

grandeur définie par une procédure de mesure adoptée par convention, qui peut être classée avec d'autres grandeurs de même nature selon l'ordre croissant ou décroissant de leurs expressions quantitatives, mais pour laquelle aucune relation algébrique entre ces grandeurs n'existe

EXEMPLE 1 Dureté C de Rockwell.

EXEMPLE 2 Indice d'octane pour les carburants.

EXEMPLE 3 Magnitude d'un séisme sur l'échelle de Richter.

EXEMPLE 4 Niveau subjectif de douleur abdominale sur une échelle de zéro à cinq.

NOTE 1 Les grandeurs ordinales ne peuvent prendre part qu'à des relations empiriques et n'ont ni **unités de mesure**, ni **dimensions**. Les différences et les rapports de grandeurs ordinales n'ont pas de signification.

NOTE 2 Les grandeurs ordinales sont classées selon des **échelles ordinales** (voir 1.28).

1.27

échelle de valeurs, f échelle de mesure, f

ensemble ordonné de **valeurs** de **grandeurs** d'une **nature** donnée, utilisé pour classer des grandeurs de cette nature en ordre croissant ou décroissant de leurs expressions quantitatives

EXEMPLE 1 Échelle des températures Celsius.

EXEMPLE 2 Échelle de temps.

EXEMPLE 3 Échelle de dureté C de Rockwell.

1.28 (1.22)

échelle ordinale, f échelle de repérage, f

échelle de valeurs pour grandeurs ordinales

EXEMPLE 1 Échelle de dureté C de Rockwell.

EXEMPLE 2 Échelle des indices d'octane pour les carburants.

NOTE Une échelle ordinale peut être établie par des mesurages conformément à une procédure de mesure.

1.29

conventional reference scale

quantity-value scale defined by formal agreement

1.30

nominal property

property of a phenomenon, body, or substance, where the property has no magnitude

EXAMPLE 1 Sex of a human being.

EXAMPLE 2 Colour of a paint sample.

EXAMPLE 3 Colour of a spot test in chemistry.

EXAMPLE 4 ISO two-letter country code.

EXAMPLE 5 Sequence of amino acids in a polypeptide.

NOTE 1 A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means.

NOTE 2 'Nominal property value' is not to be confused with **nominal quantity value**.

1 29

échelle de référence conventionnelle, f échelle de valeurs définie par un accord officiel

1.30

propriété qualitative, f

attribut, m

propriété d'un phénomène, d'un corps ou d'une substance, que l'on ne peut pas exprimer quantitativement

EXEMPLE 1 Sexe d'une personne.

EXEMPLE 2 Couleur d'un spécimen de peinture.

EXEMPLE 3 Couleur d'un spot test en chimie.

EXEMPLE 4 Code de pays ISO à deux lettres.

EXEMPLE 5 Séquence d'acides aminés dans un polypeptide.

NOTE 1 Une propriété qualitative a une valeur, qui peut être exprimée par des mots, par des codes alphanumériques ou par d'autres moyens.

NOTE 2 La valeur d'une propriété qualitative ne doit pas être confondue avec la **valeur nominale** d'une grandeur.

2 Measurement

2.1 (2.1)

measurement

process of experimentally obtaining one or more **quantity values** that can reasonably be attributed to a **quantity**

NOTE 1 Measurement does not apply to **nominal properties**.

NOTE 2 Measurement implies comparison of quantities or counting of entities.

NOTE 3 Measurement presupposes a description of the quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated measuring system operating according to the specified measurement procedure, including the measurement conditions.

2.2 (2.2)

metrology

science of measurement and its application

NOTE Metrology includes all theoretical and practical aspects of measurement, whatever the **measurement uncertainty** and field of application.

2 Mesurages

2.1 (2.1)

mesurage, m

mesure, f

processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut raisonnablement attribuer à une grandeur

NOTE 1 Les mesurages ne s'appliquent pas aux propriétés qualitatives.

NOTE 2 Un mesurage implique la comparaison de grandeurs ou le comptage d'entités.

NOTE 3 Un mesurage suppose une description de la grandeur compatible avec l'usage prévu d'un résultat de mesure, une procédure de mesure et un système de mesure étalonné fonctionnant selon la procédure de mesure spécifiée, incluant les conditions de mesure.

2.2 (2.2)

métrologie, f

science des mesurages et ses applications

NOTE La métrologie comprend tous les aspects théoriques et pratiques des mesurages, quels que soient l'incertitude de mesure et le domaine d'application.

2.3 (2.6) measurand

quantity intended to be measured

NOTE 1 The specification of a measurand requires knowledge of the **kind of quantity**, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved.

NOTE 2 In the second edition of the VIM and in IEC 60050-300:2001, the measurand is defined as the "particular quantity subject to measurement".

NOTE 3 The **measurement**, including the **measuring system** and the conditions under which the measurement is carried out, might change the phenomenon, body, or substance such that the quantity being measured may differ from the measurand as defined. In this case, adequate **correction** is necessary.

EXAMPLE 1 The potential difference between the terminals of a battery may decrease when using a voltmeter with a significant internal conductance to perform the measurement. The open-circuit potential difference can be calculated from the internal resistances of the battery and the voltmeter.

EXAMPLE 2 The length of a steel rod in equilibrium with the ambient Celsius temperature of 23 °C will be different from the length at the specified temperature of 20 °C, which is the measurand. In this case, a correction is necessary.

NOTE 4 In chemistry, "analyte", or the name of a substance or compound, are terms sometimes used for 'measurand'. This usage is erroneous because these terms do not refer to quantities.

2.4 (2.3)

measurement principle principle of measurement

phenomenon serving as a basis of a measurement

EXAMPLE 1 Thermoelectric effect applied to the measurement of temperature.

EXAMPLE 2 Energy absorption applied to the measurement of amount-of-substance concentration.

EXAMPLE 3 Lowering of the concentration of glucose in blood in a fasting rabbit applied to the measurement of insulin concentration in a preparation.

NOTE The phenomenon can be of a physical, chemical, or biological nature.

2.3 **(2.6)** mesurande, m

• "

grandeur que l'on veut mesurer

NOTE 1 La spécification d'un mesurande nécessite la connaissance de la **nature de grandeur** et la description de l'état du phénomène, du corps ou de la substance dont la grandeur est une propriété, incluant tout constituant pertinent, et les entités chimiques en jeu.

NOTE 2 Dans la deuxième édition du VIM et dans la CEI 60050-300:2001, le mesurande est défini comme la «grandeur particulière soumise à mesurage».

NOTE 3 Il se peut que le **mesurage**, incluant le **système de mesure** et les conditions sous lesquelles le mesurage est effectué, modifie le phénomène, le corps ou la substance de sorte que la grandeur mesurée peut différer du mesurande. Dans ce cas, une **correction** appropriée est nécessaire.

EXEMPLE 1 La différence de potentiel entre les bornes d'une batterie peut diminuer lorsqu'on la mesure en employant un voltmètre ayant une conductance interne importante. La différence de potentiel en circuit ouvert peut alors être calculée à partir des résistances internes de la batterie et du voltmètre.

EXEMPLE 2 La longueur d'une tige en équilibre avec la température ambiante de 23 °C sera différente de la longueur à la température spécifiée de 20 °C, qui est le mesurande. Dans ce cas, une correction est nécessaire.

NOTE 4 En chimie, l'expression «substance à analyser», ou le nom d'une substance ou d'un composé, sont quelquefois utilisés à la place de «mesurande». Cet usage est erroné puisque ces termes ne désignent pas des grandeurs.

2.4 (2.3)

principe de mesure, m

phénomène servant de base à un mesurage

EXEMPLE 1 Effet thermoélectrique appliqué au mesurage de la température.

EXEMPLE 2 Absorption d'énergie appliquée au mesurage de la concentration en quantité de matière.

EXEMPLE 3 Diminution de la concentration de glucose dans le sang d'un lapin à jeun, appliquée au mesurage de la concentration d'insuline dans une préparation.

NOTE Le phénomène peut être de nature physique, chimique ou biologique.

2.5 (2.4)

measurement method method of measurement

generic description of a logical organization of operations used in a **measurement**

NOTE Measurement methods may be qualified in various ways such as:

- substitution measurement method,
- differential measurement method, and
- null measurement method;

or

- direct measurement method, and
- indirect measurement method.

See IEC 60050-300:2001.

2.6 (2.5)

measurement procedure

detailed description of a measurement according to one or more measurement principles and to a given measurement method, based on a measurement model and including any calculation to obtain a measurement result

NOTE 1 A measurement procedure is usually documented in sufficient detail to enable an operator to perform a measurement.

NOTE 2 A measurement procedure can include a statement concerning a target measurement uncertainty.

NOTE 3 A measurement procedure is sometimes called a standard operating procedure, abbreviated SOP.

2.7 reference measurement procedure

measurement procedure accepted as providing measurement results fit for their intended use in assessing measurement trueness of measured quantity values obtained from other measurement procedures for quantities of the same kind, in calibration, or in characterizing reference materials

2.8
primary reference measurement
procedure
primary reference procedure

reference measurement procedure used to obtain a measurement result without relation to a measurement standard for a quantity of the same kind 2.5 (2.4)

méthode de mesure, f

description générique de l'organisation logique des opérations mises en œuvre dans un **mesurage**

NOTE Les méthodes de mesure peuvent être qualifiées de diverses façons telles que:

- méthode de mesure par substitution,
- méthode de mesure différentielle,
- méthode de mesure par zéro;

ou

- méthode de mesure directe,
- méthode de mesure indirecte.

Voir la CEI 60050-300:2001.

2.6 (2.5)

procédure de mesure, f procédure opératoire, f

description détaillée d'un mesurage conformément à un ou plusieurs principes de mesure et à une méthode de mesure donnée, fondée sur un modèle de mesure et incluant tout calcul destiné à obtenir un résultat de mesure

NOTE 1 Une procédure de mesure est habituellement documentée avec assez de détails pour permettre à un opérateur d'effectuer un mesurage.

NOTE 2 Une procédure de mesure peut inclure une assertion concernant une **incertitude cible**.

NOTE 3 Une procédure de mesure est quelquefois appelée en anglais *standard operating procedure*, abrégé en *SOP*. Le terme «mode opératoire de mesure» était employé en français dans la deuxième édition du VIM.

2.7

procédure de mesure de référence, f procédure opératoire de référence, f

procédure de mesure considérée comme fournissant des résultats de mesure adaptés à leur usage prévu pour l'évaluation de la justesse de valeurs mesurées obtenues à partir d'autres procédures de mesure pour des grandeurs de la même nature, pour un étalonnage ou pour la caractérisation de matériaux de référence

2.8

procédure de mesure primaire, f procédure opératoire primaire, f

procédure de mesure de référence utilisée pour obtenir un résultat de mesure sans relation avec un étalon d'une grandeur de même nature

EXAMPLE The volume of water delivered by a 50 ml pipette at 20 °C is measured by weighing the water delivered by the pipette into a beaker, taking the mass of beaker plus water minus the mass of the initially empty beaker, and correcting the mass difference for the actual water temperature using the volumic mass (mass density).

NOTE 1 The Consultative Committee for Amount of Substance – Metrology in Chemistry (CCQM) uses the term "primary method of measurement" for this concept.

NOTE 2 Definitions of two subordinate concepts, which could be termed "direct primary reference measurement procedure" and "ratio primary reference measurement procedure", are given by the CCQM (5th Meeting, 1999) [43].

2.9 (3.1)

measurement result result of measurement

set of **quantity values** being attributed to a **measurand** together with any other available relevant information

NOTE 1 A measurement result generally contains "relevant information" about the set of quantity values, such that some may be more representative of the measurand than others. This may be expressed in the form of a probability density function (PDF).

NOTE 2 A measurement result is generally expressed as a single **measured quantity value** and a **measurement uncertainty**. If the measurement uncertainty is considered to be negligible for some purpose, the measurement result may be expressed as a single measured quantity value. In many fields, this is the common way of expressing a measurement result.

NOTE 3 In the traditional literature and in the previous edition of the VIM, measurement result was defined as a value attributed to a measurand and explained to mean an **indication**, or an uncorrected result, or a corrected result, according to the context.

2.10

measured quantity value value of a measured quantity measured value

quantity value representing a measurement result

NOTE 1 For a measurement involving replicate indications, each indication can be used to provide a corresponding measured quantity value. This set of individual measured quantity values can be used to calculate a resulting measured quantity value, such as an average or median, usually with a decreased associated measurement uncertainty.

NOTE 2 When the range of the **true quantity values** believed to represent the **measurand** is small compared

EXEMPLE Le volume d'eau délivré par une pipette de 5 ml à 20 °C est mesuré en pesant l'eau délivrée par la pipette dans un bécher, en prenant la différence entre la masse du bécher contenant l'eau et la masse du bécher initialement vide, puis en corrigeant la différence de masse pour la température réelle de l'eau par l'intermédiaire de la masse volumique.

NOTE 1 Le Comité consultatif pour la quantité de matière – Métrologie en chimie (CCQM) utilise pour ce concept le terme «méthode de mesure primaire».

NOTE 2 Le CCQM a donné (5^e réunion, 1999)^[43] les définitions de deux concepts subordonnés, que l'on pourrait dénommer «procédure de mesure primaire directe» et «procédure primaire de mesure de rapports».

2.9 (3.1)

résultat de mesure, m résultat d'un mesurage, m

ensemble de **valeurs** attribuées à un **mesurande**, complété par toute autre information pertinente disponible

NOTE 1 Un résultat de mesure contient généralement des informations pertinentes sur l'ensemble de valeurs, certaines pouvant être plus représentatives du mesurande que d'autres. Cela peut s'exprimer sous la forme d'une fonction de densité de probabilité.

NOTE 2 Le résultat de mesure est généralement exprimé par une valeur mesurée unique et une incertitude de mesure. Si l'on considère l'incertitude de mesure comme négligeable dans un certain but, le résultat de mesure peut être exprimé par une seule valeur mesurée. Dans de nombreux domaines, c'est la manière la plus usuelle d'exprimer un résultat de mesure.

NOTE 3 Dans la littérature traditionnelle et dans l'édition précédente du VIM, le résultat de mesure était défini comme une valeur attribuée à un mesurande et pouvait se référer à une **indication**, un résultat brut ou un résultat corrigé, selon le contexte.

2.10

valeur mesurée, f

valeur d'une grandeur représentant un résultat de mesure

NOTE 1 Pour un mesurage impliquant des indications répétées, chacune peut être utilisée pour fournir une valeur mesurée correspondante. Cet ensemble de valeurs mesurées individuelles peut ensuite être utilisé pour calculer une valeur mesurée résultante, telle qu'une moyenne ou une médiane, en général avec une incertitude de mesure associée qui décroît.

NOTE 2 Lorsque l'étendue des valeurs vraies considérées comme représentant le **mesurande** est petite par rapport à l'incertitude de mesure, on peut considérer une

with the measurement uncertainty, a measured quantity value can be considered to be an estimate of an essentially unique true quantity value and is often an average or median of individual measured quantity values obtained through replicate measurements.

NOTE 3 In the case where the range of the true quantity values believed to represent the measurand is not small compared with the measurement uncertainty, a measured quantity value is often an estimate of an average or median of the set of true quantity values.

NOTE 4 In the GUM, the terms "result of measurement" and "estimate of the value of the measurand" or just "estimate of the measurand" are used for 'measured quantity value'.

valeur mesurée comme une estimation d'une valeur vraie par essence unique, souvent sous la forme d'une moyenne ou d'une médiane de valeurs mesurées individuelles obtenues par des mesurages répétés.

NOTE 3 Lorsque l'étendue des valeurs vraies considérées comme représentant le mesurande n'est pas petite par rapport à l'incertitude de mesure, une valeur mesurée est souvent une estimation d'une moyenne ou d'une médiane de l'ensemble des valeurs vraies.

NOTE 4 Dans le GUM, les termes «résultat de mesure» et «estimation de la valeur du mesurande», ou simplement «estimation du mesurande», sont utilisés au sens de «valeur mesurée».

2.11 (1.19) true quantity value true value of a quantity true value

quantity value consistent with the definition of a quantity

NOTE 1 In the Error Approach to describing **measurement**, a true quantity value is considered unique and, in practice, unknowable. The Uncertainty Approach is to recognize that, owing to the inherently incomplete amount of detail in the definition of a quantity, there is not a single true quantity value but rather a set of true quantity values consistent with the definition. However, this set of values is, in principle and in practice, unknowable. Other approaches dispense altogether with the concept of true quantity value and rely on the concept of **metrological compatibility of measurement results** for assessing their validity.

NOTE 2 In the special case of a fundamental constant, the quantity is considered to have a single true quantity value.

NOTE 3 When the **definitional uncertainty** associated with the **measurand** is considered to be negligible compared to the other components of the **measurement uncertainty**, the measurand may be considered to have an "essentially unique" true quantity value. This is the approach taken by the GUM and associated documents, where the word "true" is considered to be redundant.

2.11 (1.19) valeur vraie, f

valeur vraie d'une grandeur, f

valeur d'une grandeur compatible avec la définition de la grandeur

NOTE 1 Dans l'approche «erreur» de description des mesurages, la valeur vraie est considérée comme unique et, en pratique, impossible à connaître. L'approche «incertitude» consiste à reconnaître que, par suite de la quantité intrinsèquement incomplète de détails dans la définition d'une grandeur, il n'y a pas une seule valeur vraie mais plutôt un ensemble de valeurs vraies compatibles avec la définition. Toutefois, cet ensemble de valeurs est, en principe et en pratique, impossible à connaître. D'autres approches évitent complètement le concept de valeur vraie et évaluent la validité des résultats de mesure à l'aide du concept de compatibilité de mesure.

NOTE 2 Dans le cas particulier des constantes fondamentales, on considère la grandeur comme ayant une seule valeur vraie.

NOTE 3 Lorsque l'incertitude définitionnelle associée au mesurande est considérée comme négligeable par rapport aux autres composantes de l'incertitude de mesure, on peut considérer que le mesurande a une valeur vraie par essence unique. C'est l'approche adoptée dans le GUM, où le mot «vraie» est considéré comme redondant.

2.12

conventional quantity value conventional value of a quantity conventional value

quantity value attributed by agreement to a **quantity** for a given purpose

EXAMPLE 1 Standard acceleration of free fall (formerly called "standard acceleration due to gravity"), $g_n = 9.806 65 \text{ m} \cdot \text{s}^{-2}$.

2.12

valeur conventionnelle, m valeur conventionnelle d'une grandeur, m

valeur attribuée à une grandeur par un accord pour un usage donné

EXEMPLE 1 Valeur conventionnelle de l'accélération due à la pesanteur ou accélération normale de la pesanteur, $g_{\rm n}$ = 9,806 65 m·s⁻².

EXAMPLE 2 Conventional quantity value of the Josephson constant, K_{J-90} = 483 597.9 GHz · V⁻¹.

EXAMPLE 3 Conventional quantity value of a given mass standard, m = 100.00347 g.

NOTE 1 The term "conventional true quantity value" is sometimes used for this concept, but its use is discouraged.

NOTE 2 Sometimes a conventional quantity value is an estimate of a **true quantity value**.

NOTE 3 A conventional quantity value is generally accepted as being associated with a suitably small measurement uncertainty, which might be zero.

2.13 (3.5)

measurement accuracy accuracy of measurement accuracy

closeness of agreement between a measured quantity value and a true quantity value of a measurand

NOTE 1 The concept 'measurement accuracy' is not a **quantity** and is not given a **numerical quantity value**. A **measurement** is said to be more accurate when it offers a smaller **measurement error**.

NOTE 2 The term "measurement accuracy" should not be used for **measurement trueness** and the term "measurement precision" should not be used for 'measurement accuracy', which, however, is related to both these concepts.

NOTE 3 'Measurement accuracy' is sometimes understood as closeness of agreement between measured quantity values that are being attributed to the measurand.

2.14

measurement trueness trueness of measurement trueness

closeness of agreement between the average of an infinite number of replicate **measured quantity** values and a reference quantity value

NOTE 1 Measurement trueness is not a **quantity** and thus cannot be expressed numerically, but measures for closeness of agreement are given in ISO 5725.

NOTE 2 Measurement trueness is inversely related to systematic measurement error, but is not related to random measurement error.

NOTE 3 "Measurement accuracy" should not be used for 'measurement trueness'.

EXEMPLE 2 Valeur conventionnelle de la constante de Josephson, $K_{\text{J-90}}$ = 483 597,9 GHz · V⁻¹.

EXEMPLE 3 Valeur conventionnelle d'un étalon de masse donné, m = 100,003 47 g.

NOTE 1 Le terme «valeur conventionnellement vraie» est quelquefois utilisé pour ce concept, mais son utilisation est déconseillée.

NOTE 2 Une valeur conventionnelle est quelquefois une estimation d'une **valeur vraie**.

NOTE 3 Une valeur conventionnelle est généralement considérée comme associée à une **incertitude de mesure** convenablement petite, qui peut être nulle.

2.13 (3.5)

exactitude de mesure, f exactitude, f

étroitesse de l'accord entre une valeur mesurée et une valeur vraie d'un mesurande

NOTE 1 L'exactitude de mesure n'est pas une **grandeur** et ne s'exprime pas numériquement. Un **mesurage** est quelquefois dit plus exact s'il fournit une plus petite **erreur de mesure**.

NOTE 2 Il convient de ne pas utiliser le terme «exactitude de mesure» pour la **justesse de mesure** et le terme «fidélité de mesure» pour l'exactitude de mesure. Celle-ci est toutefois liée aux concepts de justesse et de fidélité.

NOTE 3 L'exactitude de mesure est quelquefois interprétée comme l'étroitesse de l'accord entre les valeurs mesurées qui sont attribuées au mesurande.

2.14

justesse de mesure, f justesse, f

étroitesse de l'accord entre la moyenne d'un nombre infini de valeurs mesurées répétées et une valeur de référence

NOTE 1 La justesse de mesure n'est pas une **grandeur** et ne peut donc pas s'exprimer numériquement, mais l'ISO 5725 donne des caractéristiques pour l'étroitesse de l'accord.

NOTE 2 La justesse de mesure varie en sens inverse de l'erreur systématique mais n'est pas liée à l'erreur aléatoire.

NOTE 3 Il convient de ne pas utiliser «exactitude de mesure» pour la justesse de mesure.

2.15

measurement precision precision

closeness of agreement between **indications** or **measured quantity values** obtained by replicate **measurements** on the same or similar objects under specified conditions

NOTE 1 Measurement precision is usually expressed numerically by measures of imprecision, such as standard deviation, variance, or coefficient of variation under the specified conditions of measurement.

NOTE 2 The 'specified conditions' can be, for example, repeatability conditions of measurement, intermediate precision conditions of measurement, or reproducibility conditions of measurement (see ISO 5725-1:1994).

NOTE 3 Measurement precision is used to define measurement repeatability, intermediate measurement precision, and measurement reproducibility.

NOTE 4 Sometimes "measurement precision" is erroneously used to mean **measurement accuracy**.

2.16 (3.10)

measurement error error of measurement error

measured quantity value minus a reference quantity value

NOTE 1 The concept of 'measurement error' can be used both

- a) when there is a single reference quantity value to refer to, which occurs if a calibration is made by means of a measurement standard with a measured quantity value having a negligible measurement uncertainty or if a conventional quantity value is given, in which case the measurement error is known, and
- if a measurand is supposed to be represented by a unique true quantity value or a set of true quantity values of negligible range, in which case the measurement error is not known.

NOTE 2 Measurement error should not be confused with production error or mistake.

2.17 (3.14)

systematic measurement error systematic error of measurement systematic error

component of **measurement error** that in replicate **measurements** remains constant or varies in a predictable manner

NOTE 1 A reference quantity value for a systematic measurement error is a true quantity value, or a

2.15

fidélité de mesure, f fidélité. f

étroitesse de l'accord entre les **indications** ou les **valeurs mesurées** obtenues par des **mesurages** répétés du même objet ou d'objets similaires dans des conditions spécifiées

NOTE 1 La fidélité est en général exprimée numériquement par des caractéristiques telles que l'écart-type, la variance ou le coefficient de variation dans les conditions spécifiées.

NOTE 2 Les conditions spécifiées peuvent être, par exemple, des conditions de répétabilité, des conditions de fidélité intermédiaire ou des conditions de reproductibilité (voir l'ISO 5725-1:1994).

NOTE 3 La fidélité sert à définir la répétabilité de mesure, la fidélité intermédiaire de mesure et la reproductibilité de mesure.

NOTE 4 Le terme «fidélité de mesure» est quelquefois utilisé improprement pour désigner l'exactitude de mesure.

2.16 (3.10)

erreur de mesure, f erreur, f

différence entre la valeur mesurée d'une grandeur et une valeur de référence

NOTE 1 Le concept d'erreur peut être utilisé

- a) lorsqu'il existe une valeur de référence unique à laquelle se rapporter, ce qui a lieu si on effectue un étalonnage au moyen d'un étalon dont la valeur mesurée a une incertitude de mesure négligeable ou si on prend une valeur conventionnelle, l'erreur étant alors connue,
- si on suppose le mesurande représenté par une valeur vraie unique ou un ensemble de valeurs vraies d'étendue négligeable, l'erreur étant alors inconnue.

NOTE 2 Il convient de ne pas confondre l'erreur de mesure avec une erreur de production ou une erreur humaine.

2.17 (3.14)

erreur systématique, f

composante de l'erreur de mesure qui, dans des mesurages répétés, demeure constante ou varie de façon prévisible

NOTE 1 La valeur de référence pour une erreur systématique est une valeur vraie, une valeur mesurée d'un étalon dont l'incertitude de mesure est néglique de la conventionnelle.

measured quantity value of a measurement standard of negligible measurement uncertainty, or a conventional quantity value.

NOTE 2 Systematic measurement error, and its causes, can be known or unknown. A **correction** can be applied to compensate for a known systematic measurement error.

NOTE 3 Systematic measurement error equals measurement error minus **random measurement error**.

NOTE 2 L'erreur systématique et ses causes peuvent être connues ou inconnues. On peut appliquer une correction pour compenser une erreur systématique connue.

NOTE 3 L'erreur systématique est égale à la différence entre l'erreur de mesure et l'erreur aléatoire.

2.18

measurement bias

bias

estimate of a systematic measurement error

2.18 biais de mesure, m biais, m erreur de justesse, f estimation d'une erreur systématique

2.19 (3.13)

random measurement error random error of measurement random error

component of **measurement error** that in replicate **measurements** varies in an unpredictable manner

NOTE 1 A **reference quantity value** for a random measurement error is the average that would ensue from an infinite number of replicate measurements of the same **measurand**.

NOTE 2 Random measurement errors of a set of replicate measurements form a distribution that can be summarized by its expectation, which is generally assumed to be zero, and its variance.

NOTE 3 Random measurement error equals measurement error minus systematic measurement error.

2.19 (3.13)

erreur aléatoire, f

composante de l'erreur de mesure qui, dans des mesurages répétés, varie de façon imprévisible

NOTE 1 La **valeur de référence** pour une erreur aléatoire est la moyenne qui résulterait d'un nombre infini de mesurages répétés du même **mesurande**.

NOTE 2 Les erreurs aléatoires d'un ensemble de mesurages répétés forment une distribution qui peut être résumée par son espérance mathématique, généralement supposée nulle, et par sa variance.

NOTE 3 L'erreur aléatoire est égale à la différence entre l'erreur de mesure et l'erreur systématique.

2.20 (3.6, Notes 1 and 2)

repeatability condition of measurement repeatability condition

condition of **measurement**, out of a set of conditions that includes the same **measurement procedure**, same operators, same **measuring system**, same operating conditions and same location, and replicate measurements on the same or similar objects over a short period of time

NOTE 1 A condition of measurement is a repeatability condition only with respect to a specified set of repeatability conditions.

NOTE 2 In chemistry, the term "intra-serial precision condition of measurement" is sometimes used to designate this concept.

2.20 (3.6, Notes 1 et 2) condition de répétabilité, f

condition de **mesurage** dans un ensemble de conditions qui comprennent la même **procédure de mesure**, les mêmes opérateurs, le même **système de mesure**, les mêmes conditions de fonctionnement et le même lieu, ainsi que des mesurages répétés sur le même objet ou des objets similaires pendant une courte période de temps

NOTE 1 Une condition de mesurage n'est une condition de répétabilité que par rapport à un ensemble donné de conditions de répétabilité.

NOTE 2 En chimie, on utilise quelquefois le terme «condition de fidélité intra-série» pour désigner ce concept.

2.21 (3.6)

measurement repeatability repeatability

measurement precision under a set of repeatability conditions of measurement

2.22

intermediate precision condition of measurement

intermediate precision condition

condition of **measurement**, out of a set of conditions that includes the same **measurement procedure**, same location, and replicate measurements on the same or similar objects over an extended period of time, but may include other conditions involving changes

NOTE 1 The changes can include new calibrations, calibrators, operators, and measuring systems.

NOTE 2 A specification for the conditions should contain the conditions changed and unchanged, to the extent practical.

NOTE 3 In chemistry, the term "inter-serial precision condition of measurement" is sometimes used to designate this concept.

2.23

intermediate measurement precision intermediate precision

measurement precision under a set of intermediate precision conditions of measurement

NOTE Relevant statistical terms are given in ISO 5725-3:1994.

2.24 (3.7, Note 2)

reproducibility condition of measurement reproducibility condition

condition of **measurement**, out of a set of conditions that includes different locations, operators, **measuring systems**, and replicate measurements on the same or similar objects

NOTE 1 The different measuring systems may use different **measurement procedures**.

NOTE 2 A specification should give the conditions changed and unchanged, to the extent practical.

2.21 (3.6)

répétabilité de mesure, f répétabilité, f

fidélité de mesure selon un ensemble de conditions de répétabilité

2.22

condition de fidélité intermédiaire, f

condition de **mesurage** dans un ensemble de conditions qui comprennent la même **procédure de mesure**, le même lieu et des mesurages répétés sur le même objet ou des objets similaires pendant une période de temps étendue, mais peuvent comprendre d'autres conditions que l'on fait varier

NOTE 1 Les conditions que l'on fait varier peuvent comprendre de nouveaux **étalonnages**, **étalons**, opérateurs et **systèmes de mesure**.

NOTE 2 II convient qu'une spécification relative aux conditions contienne, dans la mesure du possible, les conditions que l'on fait varier et celles qui restent inchangées.

NOTE 3 En chimie, on utilise quelquefois le terme «condition de fidélité inter-série» pour désigner ce concept.

2.23

fidélité intermédiaire de mesure, f fidélité intermédiaire, f

fidélité de mesure selon un ensemble de conditions de fidélité intermédiaire

NOTE Des termes statistiques pertinents sont donnés dans l'ISO 5725-3:1994.

2.24 (3.7, Note 2)

condition de reproductibilité, f

condition de **mesurage** dans un ensemble de conditions qui comprennent des lieux, des opérateurs et des **systèmes de mesure** différents, ainsi que des mesurages répétés sur le même objet ou des objets similaires

NOTE 1 Les différents systèmes de mesure peuvent utiliser des **procédures de mesure** différentes.

NOTE 2 II convient qu'une spécification relative aux conditions contienne, dans la mesure du possible, les conditions que l'on fait varier et celles qui restent inchangées.

2.25 (3.7)

measurement reproducibility reproducibility

measurement precision under reproducibility conditions of measurement

NOTE Relevant statistical terms are given in ISO 5725-1:1994 and ISO 5725-2:1994.

2.26 (3.9)

measurement uncertainty uncertainty of measurement uncertainty

non-negative parameter characterizing the dispersion of the **quantity values** being attributed to a **measurand**, based on the information used

NOTE 1 Measurement uncertainty includes components arising from systematic effects, such as components associated with **corrections** and the assigned quantity values of **measurement standards**, as well as the **definitional uncertainty**. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated.

NOTE 2 The parameter may be, for example, a standard deviation called **standard measurement uncertainty** (or a specified multiple of it), or the half-width of an interval, having a stated **coverage probability**.

NOTE 3 Measurement uncertainty comprises, in general, many components. Some of these may be evaluated by **Type A evaluation of measurement uncertainty** from the statistical distribution of the quantity values from series of **measurements** and can be characterized by standard deviations. The other components, which may be evaluated by **Type B evaluation of measurement uncertainty**, can also be characterized by standard deviations, evaluated from probability density functions based on experience or other information.

NOTE 4 In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value attributed to the measurand. A modification of this value results in a modification of the associated uncertainty.

2.27

definitional uncertainty

component of **measurement uncertainty** resulting from the finite amount of detail in the definition of a **measurand**

NOTE 1 Definitional uncertainty is the practical minimum measurement uncertainty achievable in any **measurement** of a given measurand.

NOTE 2 Any change in the descriptive detail leads to another definitional uncertainty.

NOTE 3 In the GUM:1995, D.3.4, and in IEC 60359, the concept 'definitional uncertainty' is termed "intrinsic uncertainty".

2.25 (3.7)

reproductibilité de mesure, f reproductibilité, f

fidélité de mesure selon un ensemble de conditions de reproductibilité

NOTE Des termes statistiques pertinents sont donnés dans l'ISO 5725-1:1994 et l'ISO 5725-2:1994.

2.26 (3.9)

incertitude de mesure, fincertitude, f

paramètre non négatif qui caractérise la dispersion des **valeurs** attribuées à un **mesurande**, à partir des informations utilisées

NOTE 1 L'incertitude de mesure comprend des composantes provenant d'effets systématiques, telles que les composantes associées aux corrections et aux valeurs assignées des étalons, ainsi que l'incertitude définitionnelle. Parfois, on ne corrige pas des effets systématiques estimés, mais on insère plutôt des composantes associées de l'incertitude.

NOTE 2 Le paramètre peut être, par exemple, un écarttype appelé **incertitude-type** (ou un de ses multiples) ou la demi-étendue d'un intervalle ayant une **probabilité de couverture** déterminée.

NOTE 3 L'incertitude de mesure comprend en général de nombreuses composantes. Certaines peuvent être évaluées par une évaluation de type A de l'incertitude à partir de la distribution statistique des valeurs provenant de séries de mesurages et peuvent être caractérisées par des écarts-types. Les autres composantes, qui peuvent être évaluées par une évaluation de type B de l'incertitude, peuvent aussi être caractérisées par des écarts-types, évalués à partir de fonctions de densité de probabilité fondées sur l'expérience ou d'autres informations.

NOTE 4 En général, pour des informations données, on sous-entend que l'incertitude de mesure est associée à une valeur déterminée attribuée au mesurande. Une modification de cette valeur entraîne une modification de l'incertitude associée.

2.27

incertitude définitionnelle, f

composante de l'**incertitude de mesure** qui résulte de la quantité finie de détails dans la définition d'un **mesurande**

NOTE 1 L'incertitude définitionnelle est l'incertitude minimale que l'on peut obtenir en pratique par tout **mesurage** d'un mesurande donné.

NOTE 2 Toute modification des détails descriptifs conduit à une autre incertitude définitionnelle.

NOTE 3 Dans le GUM:1995, D.3.4, et dans la CEI 60359, le concept d'incertitude définitionnelle est appelé «incertitude intrinsèque».

2.28

Type A evaluation of measurement uncertainty

Type A evaluation

evaluation of a component of measurement uncertainty by a statistical analysis of measured quantity values obtained under defined measurement conditions

NOTE 1 For various types of measurement conditions, see repeatability condition of measurement, intermediate precision condition of measurement, and reproducibility condition of measurement.

NOTE 2 For information about statistical analysis, see e.g.the GUM:1995.

NOTE 3 See also GUM:1995, 2.3.2, ISO 5725, ISO 13528, ISO/TS 21748, ISO 21749.

2.29

Type B evaluation of measurement uncertainty

Type B evaluation

evaluation of a component of measurement uncertainty determined by means other than a Type A evaluation of measurement uncertainty

EXAMPLES Evaluation based on information

- associated with authoritative published quantity values,
- associated with the quantity value of a certified reference material,
- obtained from a calibration certificate,
- about drift,
- obtained from the accuracy class of a verified measuring instrument,
- obtained from limits deduced through personal experience.

NOTE See also GUM:1995, 2.3.3.

2.30

standard measurement uncertainty standard uncertainty of measurement standard uncertainty

measurement uncertainty expressed as a standard deviation

2.31

combined standard measurement uncertainty

combined standard uncertainty

standard measurement uncertainty that is obtained using the individual standard measurement uncertainties associated with the input quantities in a measurement model

2 28

évaluation de type A de l'incertitude, f évaluation de type A, f

évaluation d'une composante de l'incertitude de mesure par une analyse statistique des valeurs mesurées obtenues dans des conditions définies de mesurage

NOTE 1 Pour divers types de conditions de mesurage, voir condition de répétabilité, condition de fidélité intermédiaire et condition de reproductibilité.

NOTE 2 Voir par exemple le GUM:1995 pour des informations sur l'analyse statistique.

NOTE 3 Voir aussi le GUM:1995, 2.3.2, l'ISO 5725, l'ISO 13528, l'ISO/TS 21748 et l'ISO 21749.

2.29

évaluation de type B de l'incertitude, f évaluation de type B, f

évaluation d'une composante de l'incertitude de mesure par d'autres moyens qu'une évaluation de type A de l'incertitude

EXEMPLES Évaluation fondée sur des informations

- associées à des valeurs publiées faisant autorité,
- associées à la valeur d'un matériau de référence certifié.
- obtenues à partir d'un certificat d'étalonnage,
- concernant la dérive,
- obtenues à partir de la classe d'exactitude d'un instrument de mesure vérifié,
- obtenues à partir de limites déduites de l'expérience personnelle.

NOTE Voir aussi le GUM:1995, 2.3.3.

2.30

incertitude-type, f

incertitude de mesure exprimée sous la forme d'un écart-type

2 31

incertitude-type composée, f

incertitude-type obtenue en utilisant les incertitudes-types individuelles associées aux grandeurs d'entrée dans un modèle de mesure NOTE In case of correlations of input quantities in a measurement model, covariances must also be taken into account when calculating the combined standard measurement uncertainty; see also GUM:1995, 2.3.4.

NOTE Lorsqu'il existe des corrélations entre les grandeurs d'entrée dans un modèle de mesure, il faut aussi prendre en compte des covariances dans le calcul de l'incertitude-type composée; voir aussi le GUM:1995, 2.3.4.

2.32

relative standard measurement uncertainty

standard measurement uncertainty divided by the absolute value of the measured quantity value

2.32

incertitude-type relative, f

quotient de l'**incertitude-type** par la valeur absolue de la **valeur mesurée**

2.33

uncertainty budget

statement of a **measurement uncertainty**, of the components of that measurement uncertainty, and of their calculation and combination

NOTE An uncertainty budget should include the **measurement model**, estimates, and measurement uncertainties associated with the **quantities** in the measurement model, covariances, type of applied probability density functions, degrees of freedom, type of evaluation of measurement uncertainty, and any **coverage factor**.

2.33

bilan d'incertitude, m

formulation d'une **incertitude de mesure** et des composantes de cette incertitude, ainsi que de leur calcul et de leur combinaison

NOTE Un bilan d'incertitude devrait comprendre le **modèle de mesure**, les estimations et incertitudes associées aux **grandeurs** qui interviennent dans ce modèle, les covariances, le type des fonctions de densité de probabilité utilisées, les degrés de liberté, le type d'évaluation de l'incertitude, ainsi que tout **facteur d'élargissement**.

2.34

target measurement uncertainty target uncertainty

measurement uncertainty specified as an upper limit and decided on the basis of the intended use of measurement results

2.34

incertitude cible, f incertitude anticipée, f

incertitude de mesure spécifiée comme une limite supérieure et choisie d'après les usages prévus des résultats de mesure

2.35

expanded measurement uncertainty expanded uncertainty

product of a **combined standard measurement uncertainty** and a factor larger than the number one

NOTE 1 The factor depends upon the type of probability distribution of the **output quantity in a measurement model** and on the selected **coverage probability**.

NOTE 2 The term "factor" in this definition refers to a coverage factor.

NOTE 3 Expanded measurement uncertainty is termed "overall uncertainty" in paragraph 5 of Recommendation INC-1 (1980) (see the GUM) and simply "uncertainty" in IEC documents.

2 35

incertitude élargie, f

produit d'une **incertitude-type composée** et d'un facteur supérieur au nombre un

NOTE 1 Le facteur dépend du type de la loi de probabilité de la grandeur de sortie dans un modèle de mesure et de la probabilité de couverture choisie.

NOTE 2 Le facteur qui intervient dans la définition est un facteur d'élargissement.

NOTE 3 L'incertitude élargie est appelée «incertitude globale» au paragraphe 5 de la Recommandation INC-1 (1980) (voir le GUM) et simplement «incertitude» dans les documents de la CEI.

2.36

coverage interval

interval containing the set of **true quantity values** of a **measurand** with a stated probability, based on the information available

2.36

intervalle élargi, m

intervalle contenant l'ensemble des valeurs vraies d'un mesurande avec une probabilité déterminée, fondé sur l'information disponible NOTE 1 A coverage interval does not need to be centred on the chosen **measured quantity value** (see JCGM 101:2008).

NOTE 2 A coverage interval should not be termed "confidence interval" to avoid confusion with the statistical concept (see GUM:1995, 6.2.2).

NOTE 3 A coverage interval can be derived from an **expanded measurement uncertainty** (see GUM:1995, 2.3.5).

NOTE 2 Il convient de ne pas appeler «intervalle de confiance» un intervalle élargi pour éviter des confusions avec le concept statistique (voir le GUM:1995, 6.2.2).

NOTE 1 Un intervalle élargi n'est pas nécessairement

centré sur la valeur mesurée choisie (voir le

NOTE 3 Un intervalle élargi peut se déduire d'une incertitude élargie (voir le GUM:1995, 2.3.5).

2.37

coverage probability

probability that the set of true quantity values of a measurand is contained within a specified coverage interval

NOTE 1 This definition pertains to the Uncertainty Approach as presented in the GUM.

NOTE 2 The coverage probability is also termed "level of confidence" in the GUM.

2.37

JCGM 101:2008).

probabilité de couverture, f

probabilité que l'ensemble des valeurs vraies d'un mesurande soit contenu dans un intervalle élargi spécifié

NOTE 1 La définition se réfère à l'approche «incertitude» présentée dans le GUM.

NOTE 2 Il convient de ne pas confondre ce concept avec le concept statistique de niveau de confiance, bien que le terme «level of confidence» soit utilisé en anglais dans le GUM

2.38

coverage factor

number larger than one by which a **combined** standard measurement uncertainty is multiplied to obtain an **expanded measurement uncertainty**

NOTE A coverage factor is usually symbolized k (see also GUM:1995, 2.3.6).

2.38

facteur d'élargissement, m

nombre supérieur à un par lequel on multiplie une incertitude-type composée pour obtenir une incertitude élargie

NOTE Un facteur d'élargissement est habituellement noté par le symbole k (voir aussi le GUM:1995, 2.3.6).

2.39 (6.11) calibration

operation that, under specified conditions, in a first step, establishes a relation between the **quantity values** with **measurement uncertainties** provided by **measurement standards** and corresponding **indications** with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a **measurement result** from an indication

NOTE 1 A calibration may be expressed by a statement, calibration function, **calibration diagram**, **calibration curve**, or calibration table. In some cases, it may consist of an additive or multiplicative **correction** of the indication with associated measurement uncertainty.

NOTE 2 Calibration should not be confused with **adjustment of a measuring system**, often mistakenly called "self-calibration", nor with **verification** of calibration.

2.39 (6.11)

étalonnage, m

opération qui, dans des conditions spécifiées, établit en une première étape une relation entre les valeurs et les incertitudes de mesure associées qui sont fournies par des étalons et les indications correspondantes avec les incertitudes associées, puis utilise en une seconde étape cette information pour établir une relation permettant d'obtenir un résultat de mesure à partir d'une indication

NOTE 1 Un étalonnage peut être exprimé sous la forme d'un énoncé, d'une fonction d'étalonnage, d'un diagramme d'étalonnage, d'une courbe d'étalonnage ou d'une table d'étalonnage. Dans certains cas, il peut consister en une correction additive ou multiplicative de l'indication avec une incertitude de mesure associée.

NOTE 2 Il convient de ne pas confondre l'étalonnage avec l'ajustage d'un système de mesure, souvent appelé improprement «auto-étalonnage», ni avec la vérification de l'étalonnage.

NOTE 3 Often, the first step alone in the above definition is perceived as being calibration.

NOTE 3 La seule première étape dans la définition est souvent perçue comme étant l'étalonnage.

2.40

calibration hierarchy

sequence of **calibrations** from a reference to the final **measuring system**, where the outcome of each calibration depends on the outcome of the previous calibration

NOTE 1 **Measurement uncertainty** necessarily increases along the sequence of calibrations.

NOTE 2 The elements of a calibration hierarchy are one or more **measurement standards** and measuring systems operated according to **measurement procedures**.

NOTE 3 For this definition, the 'reference' can be a definition of a **measurement unit** through its practical realization, or a measurement procedure, or a measurement standard.

NOTE 4 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the **quantity value** and measurement uncertainty attributed to one of the measurement standards.

2.41 (6.10)

metrological traceability

property of a **measurement result** whereby the result can be related to a reference through a documented unbroken chain of **calibrations**, each contributing to the **measurement uncertainty**

NOTE 1 For this definition, a 'reference' can be a definition of a **measurement unit** through its practical realization, or a **measurement procedure** including the measurement unit for a non-**ordinal quantity**, or a **measurement standard**.

NOTE 2 Metrological traceability requires an established calibration hierarchy.

NOTE 3 Specification of the reference must include the time at which this reference was used in establishing the calibration hierarchy, along with any other relevant metrological information about the reference, such as when the first calibration in the calibration hierarchy was performed.

NOTE 4 For measurements with more than one input quantity in the measurement model, each of the input quantity values should itself be metrologically traceable and the calibration hierarchy involved may form a branched structure or a network. The effort involved in establishing metrological traceability for each input quantity value should be commensurate with its relative contribution to the measurement result.

2.40

hiérarchie d'étalonnage, f

suite d'étalonnages depuis une référence jusqu'au système de mesure final, dans laquelle le résultat de chaque étalonnage dépend de celui de l'étalonnage précédent

NOTE 1 L'incertitude de mesure augmente nécessairement le long de la suite d'étalonnages.

NOTE 2 Les éléments d'une hiérarchie d'étalonnage sont des **étalons** ainsi que des systèmes de mesure utilisés conformément à des **procédures de mesure**.

NOTE 3 La référence mentionnée dans la définition peut être une définition d'une **unité de mesure** sous la forme de sa réalisation pratique, une procédure de mesure ou un étalon.

NOTE 4 Une comparaison entre deux étalons peut être considérée comme un étalonnage si elle sert à vérifier et, si nécessaire, à corriger la **valeur** et l'incertitude attribuées à l'un des étalons.

2.41 (6.10)

traçabilité métrologique, f

propriété d'un résultat de mesure selon laquelle ce résultat peut être relié à une référence par l'intermédiaire d'une chaîne ininterrompue et documentée d'étalonnages dont chacun contribue à l'incertitude de mesure

NOTE 1 La référence mentionnée dans la définition peut être une définition d'une unité de mesure sous la forme de sa réalisation pratique, une procédure de mesure, qui indique l'unité de mesure dans la cas d'une grandeur autre qu'une grandeur ordinale, ou un étalon.

NOTE 2 La traçabilité métrologique nécessite l'existence d'une **hiérarchie d'étalonnage**.

NOTE 3 La spécification de la référence doit comprendre la date où cette référence a été utilisée dans l'établissement d'une hiérarchie d'étalonnage, ainsi que d'autres informations métrologiques pertinentes concernant la référence, telles que la date où a été effectué le premier étalonnage de la hiérarchie.

NOTE 4 Pour des mesurages comportant plus d'une seule grandeur d'entrée dans le modèle de mesure, chaque valeur d'entrée devrait être elle-même métrologiquement traçable et la hiérarchie d'étalonnage peut prendre la forme d'une structure ramifiée ou d'un réseau. Il convient que l'effort consacré à établir la traçabilité métrologique de chaque valeur d'entrée soit proportionné à sa contribution relative au résultat de mesure.

NOTE 5 Metrological traceability of a measurement result does not ensure that the measurement uncertainty is adequate for a given purpose or that there is an absence of mistakes.

NOTE 6 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the quantity value and measurement uncertainty attributed to one of the measurement standards.

NOTE 7 The ILAC considers the elements for confirming metrological traceability to be an unbroken metrological traceability chain to an international measurement standard or a national measurement standard, a documented measurement uncertainty, a documented measurement procedure, accredited technical competence, metrological traceability to the SI, and calibration intervals (see ILAC P-10:2002).

NOTE 8 The abbreviated term "traceability" is sometimes used to mean 'metrological traceability' as well as other concepts, such as 'sample traceability' or 'document traceability' or 'instrument traceability' or 'material traceability', where the history ("trace") of an item is meant. Therefore, the full term of "metrological traceability" is preferred if there is any risk of confusion.

2.42 (6.10 Note 2) metrological traceability chain traceability chain

sequence of **measurement standards** and **calibrations** that is used to relate a **measurement result** to a reference

NOTE 1 A metrological traceability chain is defined through a **calibration hierarchy**.

NOTE 2 A metrological traceability chain is used to establish **metrological traceability** of a measurement result.

NOTE 3 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the **quantity value** and **measurement uncertainty** attributed to one of the measurement standards.

2.43

metrological traceability to a measurement unit metrological traceability to a unit

metrological traceability where the reference is the definition of a **measurement unit** through its practical realization

NOTE The expression "traceability to the SI" means 'metrological traceability to a measurement unit of the **International System of Units**'.

NOTE 5 La traçabilité métrologique d'un résultat de mesure n'assure pas l'adéquation de l'incertitude de mesure à un but donné ou l'absence d'erreurs humaines.

NOTE 6 Une comparaison entre deux étalons peut être considérée comme un étalonnage si elle sert à vérifier et, si nécessaire, à corriger la valeur et l'incertitude attribuées à l'un des étalons.

NOTE 7 L'ILAC considère que les éléments nécessaires pour confirmer la traçabilité métrologique sont une chaîne de traçabilité métrologique ininterrompue à un étalon international ou un étalon national, une incertitude de mesure documentée, une procédure de mesure documentée, une compétence technique reconnue, la traçabilité métrologique au SI et des intervalles entre étalonnages (voir ILAC P-10:2002).

NOTE 8 Le terme abrégé «traçabilité» est quelquefois employé pour désigner la traçabilité métrologique, ainsi que d'autres concepts tels que la traçabilité d'un spécimen, d'un document, d'un instrument ou d'un matériau, où intervient l'historique (la trace) d'une entité. Il est donc préférable d'utiliser le terme complet «traçabilité métrologique» s'il y a risque de confusion.

2.42

chaîne de traçabilité métrologique, f chaîne de traçabilité, f

succession d'étalons et d'étalonnages qui est utilisée pour relier un résultat de mesure à une référence

NOTE 1 Une chaîne de traçabilité métrologique est définie par l'intermédiaire d'une hiérarchie d'étalonnage.

NOTE 2 La chaîne de traçabilité métrologique est utilisée pour établir la **traçabilité métrologique** du résultat de mesure.

NOTE 3 Une comparaison entre deux étalons peut être considérée comme un étalonnage si elle sert à vérifier et, si nécessaire, à corriger la valeur et l'incertitude de mesure attribuées à l'un des étalons.

2.43

traçabilité métrologique à une unité de mesure, f

traçabilité métrologique à une unité, f

traçabilité métrologique où la référence est la définition d'une **unité de mesure** sous la forme de sa réalisation pratique

NOTE L'expression «traçabilité au SI» signifie la traçabilité métrologique à une unité de mesure du **Système** international d'unités.

2.44

verification

provision of objective evidence that a given item fulfils specified requirements

EXAMPLE 1 Confirmation that a given **reference material** as claimed is homogeneous for the **quantity value** and **measurement procedure** concerned, down to a measurement portion having a mass of 10 mg.

EXAMPLE 2 Confirmation that performance properties or legal requirements of a **measuring system** are achieved.

EXAMPLE 3 Confirmation that a **target measurement uncertainty** can be met.

NOTE 1 When applicable, **measurement uncertainty** should be taken into consideration.

NOTE 2 The item may be, e.g. a process, measurement procedure, material, compound, or measuring system.

NOTE 3 The specified requirements may be, e.g. that a manufacturer's specifications are met.

NOTE 4 Verification in legal metrology, as defined in VIML^[53], and in conformity assessment in general, pertains to the examination and marking and/or issuing of a verification certificate for a measuring system.

NOTE 5 Verification should not be confused with **calibration**. Not every verification is a **validation**.

NOTE 6 In chemistry, verification of the identity of the entity involved, or of activity, requires a description of the structure or properties of that entity or activity.

2.45 validation

verification, where the specified requirements are adequate for an intended use

EXAMPLE A **measurement procedure**, ordinarily used for the **measurement** of mass concentration of nitrogen in water, may be validated also for measurement of mass concentration of nitrogen in human serum.

2.46

metrological comparability of measurement results metrological comparability

comparability of **measurement results**, for **quantities** of a given **kind**, that are metrologically traceable to the same reference

2.44

vérification, f

fourniture de preuves tangibles qu'une entité donnée satisfait à des exigences spécifiées

EXEMPLE 1 Confirmation qu'un matériau de référence donné est bien, comme déclaré, homogène pour la valeur et la procédure de mesure concernées jusqu'à des prises de mesure de masse 10 mg.

EXEMPLE 2 Confirmation que des propriétés relatives aux performances ou des exigences légales sont satisfaites par un **système de mesure**.

EXEMPLE 3 Confirmation qu'une **incertitude cible** peut être atteinte.

NOTE 1 S'il y a lieu, il convient de prendre en compte l'incertitude de mesure.

NOTE 2 L'entité peut être, par exemple, un processus, une procédure de mesure, un matériau, un composé ou un système de mesure.

NOTE 3 Les exigences spécifiées peuvent être, par exemple, les spécifications d'un fabricant.

NOTE 4 La vérification en métrologie légale, comme définie dans le VIML^[53], et plus généralement en évaluation de la conformité, comporte l'examen et le marquage et/ou la délivrance d'un certificat de vérification pour un système de mesure.

NOTE 5 Il convient de ne pas confondre la vérification avec l'**étalonnage**. Toute vérification n'est pas une **validation**.

NOTE 6 En chimie, la vérification de l'identité d'une entité, ou celle d'une activité, nécessite une description de la structure ou des propriétés de cette entité ou activité.

2.45

validation, f

vérification, où les exigences spécifiées sont adéquates pour un usage déterminé

EXEMPLE Une **procédure de mesure**, habituellement utilisée pour le **mesurage** de la concentration en masse d'azote dans l'eau, peut aussi être validée pour le mesurage dans le sérum humain.

2.46

comparabilité métrologique, f

comparabilité de **résultats de mesure**, pour des **grandeurs** d'une **nature** donnée, qui sont métrologiquement traçables à une même référence

EXAMPLE Measurement results, for the distances between the Earth and the Moon, and between Paris and London, are metrologically comparable when they are both metrologically traceable to the same **measurement unit**, for instance the metre.

NOTE 1 See Note 1 to 2.41 metrological traceability.

NOTE 2 Metrological comparability of measurement results does not necessitate that the **measured quantity values** and associated **measurement uncertainties** compared be of the same order of magnitude.

2.47
metrological compatibility of
measurement results
metrological compatibility

property of a set of measurement results for a specified measurand, such that the absolute value of the difference of any pair of measured quantity values from two different measurement results is smaller than some chosen multiple of the standard measurement uncertainty of that difference

NOTE 1 Metrological compatibility of measurement results replaces the traditional concept of 'staying within the error', as it represents the criterion for deciding whether two measurement results refer to the same measurand or not. If in a set of **measurements** of a measurand, thought to be constant, a measurement result is not compatible with the others, either the measurement was not correct (e.g. its **measurement uncertainty** was assessed as being too small) or the measured **quantity** changed between measurements.

NOTE 2 Correlation between the measurements influences metrological compatibility of measurement results. If the measurements are completely uncorrelated, the standard measurement uncertainty of their difference is equal to the root mean square sum of their standard measurement uncertainties, while it is lower for positive covariance or higher for negative covariance.

2.48 measurement model model of measurement model

mathematical relation among all **quantities** known to be involved in a **measurement**

NOTE 1 A general form of a measurement model is the equation $h(Y, X_1, ..., X_n) = 0$, where Y, the **output quantity in the measurement model**, is the **measurand**, the **quantity value** of which is to be inferred from information about **input quantities in the measurement model** $X_1, ..., X_n$.

NOTE 2 In more complex cases where there are two or more output quantities in a measurement model, the measurement model consists of more than one equation.

EXEMPLE Des résultats de mesure pour les distances entre la Terre et la Lune et entre Paris et Londres sont métrologiquement comparables s'ils sont métrologiquement traçables à la même **unité de mesure**, par exemple le mètre.

NOTE 1 Voir la Note 1 de 2.41, traçabilité métrologique.

NOTE 2 La comparabilité métrologique ne nécessite pas que les valeurs mesurées et les incertitudes de mesure associées soient du même ordre de grandeur.

2.47 compatibilité de mesure, f compatibilité métrologique, f

propriété d'un ensemble de **résultats de mesure** correspondant à un **mesurande** spécifié, telle que la valeur absolue de la différence des **valeurs mesurées** pour toute paire de résultats de mesure est plus petite qu'un certain multiple choisi de l'**incertitude-type** de cette différence

NOTE 1 La compatibilité de mesure remplace le concept traditionnel «rester dans l'erreur», puisqu'elle exprime selon quel critère décider si deux résultats de mesure se rapportent ou non au même mesurande. Si, dans un ensemble de mesurages d'un mesurande que l'on pense être constant, un résultat de mesure n'est pas compatible avec les autres, soit le mesurage n'est pas correct (par exemple l'incertitude de mesure évaluée est trop petite), soit la grandeur mesurée a changé d'un mesurage à l'autre.

NOTE 2 La corrélation entre les mesurages influence la compatibilité de mesure. Si les mesurages sont entièrement décorrélés, l'incertitude-type de leur différence est égale à la moyenne quadratique de leurs incertitudes-types (racine carrée de la somme des carrés), tandis qu'elle est plus petite pour une covariance positive ou plus grande pour une covariance négative.

2.48 modèle de mesure, m modèle, m

relation mathématique entre toutes les **grandeurs** qui interviennent dans un **mesurage**

NOTE 1 Une forme générale d'un modèle de mesure est l'équation $h(Y, X_1, ..., X_n) = 0$, où Y, la grandeur de sortie dans le modèle de mesure, est le mesurande, dont la valeur doit être déduite de l'information sur les grandeurs d'entrée dans le modèle de mesure $X_1, ..., X_n$.

NOTE 2 Dans les cas plus complexes où il y a deux grandeurs de sortie ou plus, le modèle de mesure comprend plus d'une seule équation.

2.49

measurement function

function of quantities, the value of which, when calculated using known quantity values for the input quantities in a measurement model, is a measured quantity value of the output quantity in the measurement model

NOTE 1 If a **measurement model** $h(Y, X_1, ..., X_n) = 0$ can explicitly be written as $Y = f(X_1, ..., X_n)$, where Y is the output quantity in the measurement model, the function f is the measurement function. More generally, f may symbolize an algorithm, yielding for input quantity values $x_1, ..., x_n$ a corresponding unique output quantity value $y = f(x_1, ..., x_n)$.

NOTE 2 A measurement function is also used to calculate the **measurement uncertainty** associated with the measured quantity value of Y.

2.50

input quantity in a measurement model input quantity

quantity that must be measured, or a quantity, the value of which can be otherwise obtained, in order to calculate a measured quantity value of a measurand

EXAMPLE When the length of a steel rod at a specified temperature is the measurand, the actual temperature, the length at that actual temperature, and the linear thermal expansion coefficient of the rod are input quantities in a measurement model.

NOTE 1 An input quantity in a measurement model is often an output quantity of a **measuring system**.

NOTE 2 **Indications**, **corrections** and **influence quantities** can be input quantities in a measurement model.

2.51

output quantity in a measurement model output quantity

quantity, the measured value of which is calculated using the values of input quantities in a measurement model

2.52 (2.7)

influence quantity

quantity that, in a direct **measurement**, does not affect the quantity that is actually measured, but affects the relation between the **indication** and the **measurement result**

2.49

fonction de mesure, f

fonction de grandeurs, dont la valeur, lorsqu'elle est calculée en utilisant des valeurs connues pour les grandeurs d'entrée dans le modèle de mesure, est une valeur mesurée de la grandeur de sortie dans le modèle de mesure

NOTE 1 Si un **modèle de mesure** $h(Y, X_1, ..., X_n) = 0$ peut être écrit explicitement sous la forme $Y = f(X_1, ..., X_n)$, où Y est la grandeur de sortie dans le modèle de mesure, la fonction f est la fonction de mesure. Plus généralement, f peut symboliser un algorithme qui fournit, pour les valeurs d'entrée $x_1, ..., x_n$, une valeur de sortie unique correspondante $y = f(x_1, ..., x_n)$.

NOTE 2 On utilise aussi une fonction de mesure pour calculer l'**incertitude de mesure** associée à la valeur mesurée de Y.

2.50

grandeur d'entrée dans un modèle de mesure, f

grandeur d'entrée, f

grandeur qui doit être mesurée, ou grandeur dont la **valeur** peut être obtenue autrement, pour calculer une **valeur mesurée** d'un **mesurande**

EXEMPLE Lorsque le mesurande est la longueur d'une tige d'acier à une température spécifiée, la température réelle, la longueur à la température réelle et le coefficient de dilatation thermique linéique de la tige sont des grandeurs d'entrée dans un modèle de mesure.

NOTE 1 Une grandeur d'entrée dans un modèle de mesure est souvent une grandeur de sortie d'un système de mesure.

NOTE 2 Les indications, les corrections et les grandeurs d'influence sont des grandeurs d'entrée dans un modèle de mesure.

2.51

grandeur de sortie dans un modèle de mesure, f grandeur de sortie, f

grandeur dont la valeur mesurée est calculée en utilisant les valeurs des grandeurs d'entrée dans un modèle de mesure

2.52 (2.7)

grandeur d'influence, f

grandeur qui, lors d'un **mesurage** direct, n'a pas d'effet sur la grandeur effectivement mesurée, mais a un effet sur la relation entre l'**indication** et le **résultat de mesure**

EXAMPLE 1 Frequency in the direct measurement with an ammeter of the constant amplitude of an alternating current.

EXAMPLE 2 Amount-of-substance concentration of bilirubin in a direct measurement of haemoglobin amount-of-substance concentration in human blood plasma.

EXAMPLE 3 Temperature of a micrometer used for measuring the length of a rod, but not the temperature of the rod itself which can enter into the definition of the measurand.

EXAMPLE 4 Background pressure in the ion source of a mass spectrometer during a measurement of amount-of-substance fraction.

NOTE 1 An indirect measurement involves a combination of direct measurements, each of which may be affected by influence quantities.

NOTE 2 In the GUM, the concept 'influence quantity' is defined as in the second edition of the VIM, covering not only the quantities affecting the **measuring system**, as in the definition above, but also those quantities that affect the quantities actually measured. Also, in the GUM this concept is not restricted to direct measurements.

2.53 (3.15) (3.16) correction

compensation for an estimated systematic effect

NOTE 1 See GUM:1995, 3.2.3, for an explanation of 'systematic effect'.

NOTE 2 The compensation can take different forms, such as an addend or a factor, or can be deduced from a table.

EXEMPLE 1 Fréquence lors du mesurage direct de l'amplitude constante d'un courant alternatif au moyen d'un ampèremètre.

EXEMPLE 2 Concentration en quantité de matière de bilirubine lors du mesurage direct de la concentration en quantité de matière d'hémoglobine dans le plasma sanguin humain.

EXEMPLE 3 Température d'un micromètre lors du mesurage de la longueur d'une tige, mais pas la température de la tige elle-même qui peut entrer dans la définition du **mesurande**.

EXEMPLE 4 Pression ambiante dans la source d'ions d'un spectromètre de masse lors du mesurage d'une fraction molaire.

NOTE 1 Un mesurage indirect implique une combinaison de mesurages directs, sur chacun desquels des grandeurs d'influence peuvent avoir un effet.

NOTE 2 Dans le GUM, le concept «grandeur d'influence» est défini comme dans la deuxième édition du VIM, de façon à comprendre non seulement les grandeurs qui ont un effet sur le **système de mesure**, comme dans la définition ci-dessus, mais aussi celles qui ont un effet sur les grandeurs effectivement mesurées. En outre, le concept n'y est pas limité aux mesurages directs.

2.53 (3.15) (3.16) correction, f

compensation d'un effet systématique connu

NOTE 1 Voir le GUM:1995, 3.2.3, pour une explication du concept d'effet systématique.

NOTE 2 La modification peut prendre différentes formes, telles que l'addition d'une valeur ou la multiplication par un facteur, ou peut se déduire d'une table.

3 Devices for measurement

3.1 (4.1)

measuring instrument

device used for making **measurements**, alone or in conjunction with one or more supplementary devices

NOTE 1 A measuring instrument that can be used alone is a **measuring system**.

NOTE 2 A measuring instrument may be an **indicating measuring instrument** or a **material measure**.

3.2 (4.5)

measuring system

set of one or more measuring instruments and often other devices, including any reagent and

3 Dispositifs de mesure

3.1 (4.1)

instrument de mesure, m appareil de mesure, m

dispositif utilisé pour faire des **mesurages**, seul ou associé à un ou plusieurs dispositifs annexes

NOTE 1 Un instrument de mesure qui peut être utilisé seul est un système de mesure.

NOTE 2 Un instrument de mesure peut être un appareil de mesure indicateur ou une mesure matérialisée.

3.2 (4.5)

système de mesure, m

ensemble d'un ou plusieurs **instruments de mesure** et souvent d'autres dispositifs, comprenant si néces-

supply, assembled and adapted to give information used to generate **measured quantity values** within specified intervals for **quantities** of specified **kinds**

NOTE A measuring system may consist of only one measuring instrument.

saire réactifs et alimentations, assemblés et adaptés pour fournir des informations destinées à obtenir des valeurs mesurées dans des intervalles spécifiés pour des grandeurs de natures spécifiées

NOTE Un système de mesure peut consister en un seul instrument de mesure.

3.3 (4.6)

indicating measuring instrument

measuring instrument providing an output signal carrying information about the **value** of the **quantity** being measured

EXAMPLES Voltmeter, micrometer, thermometer, electronic balance.

NOTE 1 An indicating measuring instrument may provide a record of its **indication**.

NOTE 2 An output signal may be presented in visual or acoustic form. It may also be transmitted to one or more other devices.

3.4 (4.6)

displaying measuring instrument

indicating measuring instrument where the output signal is presented in visual form

3.5 (4.17)

scale of a displaying measuring instrument

part of a **displaying measuring instrument**, consisting of an ordered set of marks together with any associated **quantity values**

3.6 (4.2)

material measure

measuring instrument reproducing or supplying, in a permanent manner during its use, quantities of one or more given kinds, each with an assigned quantity value

EXAMPLES Standard weight, volume measure (supplying one or several quantity values, with or without a quantity-value scale), standard electric resistor, line scale (ruler), gauge block, standard signal generator, certified reference material.

NOTE 1 The **indication** of a material measure is its assigned quantity value.

3.3 (4.6)

appareil de mesure indicateur, m appareil indicateur, m

instrument de mesure qui fournit un signal de sortie porteur d'informations sur la valeur de la grandeur mesurée

EXEMPLES Voltmètre, micromètre à vis, thermomètre, balance électronique.

NOTE 1 Un appareil de mesure indicateur peut fournir un enregistrement de son **indication**.

NOTE 2 Un signal de sortie peut être présenté sous forme visuelle ou acoustique. Il peut aussi être transmis à un ou plusieurs autres dispositifs.

3.4 (4.6)

appareil de mesure afficheur, m appareil afficheur, m

appareil de mesure indicateur dont le signal de sortie est présenté sous forme visuelle

3.5 (4.17)

échelle d'un appareil de mesure afficheur, f

échelle, f

partie d'un appareil de mesure afficheur constituée d'un ensemble ordonné de repères, associés éventuellement à des nombres ou des valeurs de grandeurs

3.6 (4.2)

mesure matérialisée, f

instrument de mesure qui reproduit ou fournit, d'une manière permanente pendant son emploi, des grandeurs d'une ou plusieurs natures, chacune avec une valeur assignée

EXEMPLES Masse marquée, mesure de capacité (fournissant une ou plusieurs valeurs, avec ou sans **échelle de valeurs**), résistance électrique étalon, règle graduée, cale étalon, générateur de signaux étalons, **matériau de référence certifié**.

NOTE 1 L'**indication** d'une mesure matérialisée est sa valeur assignée.

NOTE 2 A material measure can be a **measurement standard**.

NOTE 2 Une mesure matérialisée peut être un étalon.

3.7 (4.3)

measuring transducer

device, used in **measurement**, that provides an output **quantity** having a specified relation to the input quantity

EXAMPLES Thermocouple, electric current transformer, strain gauge, pH electrode, Bourdon tube, bimetallic strip.

3.8 (4.14)

sensor

element of a **measuring system** that is directly affected by a phenomenon, body, or substance carrying a **quantity** to be measured

EXAMPLES Sensing coil of a platinum resistance thermometer, rotor of a turbine flow meter, Bourdon tube of a pressure gauge, float of a level-measuring instrument, photocell of a spectrometer, thermotropic liquid crystal which changes colour as a function of temperature.

NOTE In some fields, the term "detector" is used for this concept.

3.9 (4.15)

detector

device or substance that indicates the presence of a phenomenon, body, or substance when a threshold **value** of an associated **quantity** is exceeded

EXAMPLES Halogen leak detector, litmus paper.

NOTE 1 In some fields, the term "detector" is used for the concept of **sensor**.

NOTE 2 In chemistry, the term "indicator" is frequently used for this concept.

3.10 (4.4)

measuring chain

series of elements of a **measuring system** constituting a single path of the signal from a **sensor** to an output element

EXAMPLE 1 Electro-acoustic measuring chain comprising a microphone, attenuator, filter, amplifier, and voltmeter.

EXAMPLE 2 Mechanical measuring chain comprising a Bourdon tube, system of levers, two gears, and a mechanical dial.

3.7 (4.3)

transducteur de mesure, m

dispositif, employé en **mesurage**, qui fait correspondre à une **grandeur** d'entrée une grandeur de sortie selon une loi déterminée

EXEMPLES Thermocouple, transformateur de courant électrique, jauge de contrainte, électrode de pH, tube de Bourdon, bilame.

3.8 (4.14)

capteur, m

élément d'un **système de mesure** qui est directement soumis à l'action du phénomène, du corps ou de la substance portant la **grandeur** à mesurer

EXEMPLES Bobine sensible d'un thermomètre à résistance de platine, rotor d'un débitmètre à turbine, tube de Bourdon d'un manomètre, flotteur d'un appareil de mesure de niveau, récepteur photoélectrique d'un spectrophotomètre, cristal liquide thermotrope dont la couleur change en fonction de la température.

NOTE Dans certains domaines, le terme «détecteur» est employé pour ce concept.

3.9 (4.15)

détecteur, m

dispositif ou substance qui indique la présence d'un phénomène, d'un corps ou d'une substance lorsqu'une **valeur** de seuil d'une **grandeur** associée est dépassée

EXEMPLES Détecteur de fuite à halogène, papier au tournesol.

NOTE 1 Dans certains domaines, le terme «détecteur» est employé pour le concept de **capteur**.

NOTE 2 En chimie, le terme «indicateur» est souvent employé pour ce concept.

3.10 (4.4)

chaîne de mesure, f

suite d'éléments d'un système de mesure qui constitue un seul chemin du signal depuis le capteur jusqu'à l'élément de sortie

EXEMPLE 1 Chaîne de mesure électroacoustique comprenant un microphone, un atténuateur, un filtre, un amplificateur et un voltmètre.

EXEMPLE 2 Chaîne de mesure mécanique comprenant un tube de Bourdon, un système de leviers, deux roues dentées et un cadran mécanique. 3.11 (4.30)

adjustment of a measuring system adjustment

set of operations carried out on a **measuring** system so that it provides prescribed **indications** corresponding to given **values** of a **quantity** to be measured

NOTE 1 Types of adjustment of a measuring system include **zero adjustment of a measuring system**, offset adjustment, and span adjustment (sometimes called gain adjustment).

NOTE 2 Adjustment of a measuring system should not be confused with **calibration**, which is a prerequisite for adjustment.

NOTE 3 After an adjustment of a measuring system, the measuring system must usually be recalibrated.

3.12

zero adjustment of a measuring system zero adjustment

adjustment of a measuring system so that it provides a null **indication** corresponding to a zero **value** of a **quantity** to be measured

4 Properties of measuring devices

4.1 (3.2) indication

quantity value provided by a measuring instrument or a measuring system

NOTE 1 An indication may be presented in visual or acoustic form or may be transferred to another device. An indication is often given by the position of a pointer on the display for analog outputs, a displayed or printed number for digital outputs, a code pattern for code outputs, or an assigned quantity value for **material measures**.

NOTE 2 An indication and a corresponding value of the **quantity** being measured are not necessarily values of quantities of the same **kind**.

4.2 blank indication background indication

indication obtained from a phenomenon, body, or substance similar to the one under investigation, but for which a **quantity** of interest is supposed not to be present, or is not contributing to the indication

3.11 (4.30)

ajustage d'un système de mesure, **m** ajustage, m

ensemble d'opérations réalisées sur un système de mesure pour qu'il fournisse des indications prescrites correspondant à des valeurs données des grandeurs à mesurer

NOTE 1 Divers types d'ajustage d'un système de mesure sont le **réglage de zéro**, le réglage de décalage, le réglage d'étendue (appelé aussi réglage de gain).

NOTE 2 Il convient de ne pas confondre l'ajustage d'un système de mesure avec son **étalonnage**, qui est un préalable à l'ajustage.

NOTE 3 Après un ajustage d'un système de mesure, le système demande généralement à être réétalonné.

3.12

réglage de zéro, m

ajustage d'un système de mesure pour que le système fournisse une indication égale à zéro correspondant à une valeur égale à zéro de la grandeur à mesurer

4 Propriétés des dispositifs de mesure

4.1 (3.2) indication, f

valeur fournie par un instrument de mesure ou un système de mesure

NOTE 1 Une indication peut être présentée sous forme visuelle ou acoustique ou peut être transférée à un autre dispositif. Elle est souvent donnée par la position d'un pointeur sur un affichage pour les sorties analogiques, par un nombre affiché ou imprimé pour les sorties numériques, par une configuration codée pour les sorties codées, ou par la valeur assignée pour les mesures matérialisées.

NOTE 2 Une indication et la valeur de la **grandeur** mesurée correspondante ne sont pas nécessairement des valeurs de grandeurs de même **nature**.

4.2

indication du blanc, f indication d'environnement, f

indication obtenue à partir d'un phénomène, d'un corps ou d'une substance semblable au phénomène, au corps ou à la substance en cours d'étude, mais dont la grandeur d'intérêt est supposée ne pas être présente ou ne contribue pas à l'indication

4.3 (4.19)

indication interval

set of quantity values bounded by extreme possible indications

NOTF 1 An indication interval is usually stated in terms of its smallest and greatest quantity values, for example "99 V to 201 V".

NOTE 2 In some fields, the term is "range of indications".

4.4(5.1)

nominal indication interval nominal interval

set of quantity values, bounded by rounded or approximate extreme indications, obtainable with a particular setting of the controls of a measuring instrument or measuring system and used to designate that setting

A nominal indication interval is usually stated NOTE 1 as its smallest and greatest quantity values, for example "100 V to 200 V".

NOTE 2 In some fields, the term is "nominal range".

4.5 (5.2)

range of a nominal indication interval absolute value of the difference between the extreme quantity values of a nominal indication interval

EXAMPLE For a nominal indication interval of -10 V to +10 V, the range of the nominal indication interval is 20 V.

NOTE Range of a nominal indication interval is sometimes termed "span of a nominal interval".

4.6 (5.3)

nominal quantity value nominal value

rounded or approximate value of a characterizing quantity of a measuring instrument or measuring system that provides guidance for its appropriate use

EXAMPLE 1 $100\,\Omega$ as the nominal quantity value marked on a standard resistor.

1 000 ml as the nominal quantity value marked on a single-mark volumetric flask.

4.3 (4.19)

intervalle des indications, m

ensemble des valeurs comprises entre les deux indications extrêmes

NOTE 1 Un intervalle des indications est généralement exprimé en donnant la plus petite et la plus grande valeur, par exemple «99 V à 201 V».

Dans certains domaines, le terme anglais est «range of indications». En français, le terme «étendue des indications» est parfois employé.

4.4(5.1)

intervalle nominal des indications, m intervalle nominal, m calibre, m

ensemble des valeurs comprises entre deux indications extrêmes arrondies ou approximatives, que l'on obtient pour une position particulière des commandes d'un instrument de mesure ou d'un système de mesure et qui sert à désigner cette position

Un intervalle nominal des indications est généralement exprimé en donnant la plus petite et la plus grande valeur, par exemple «100 V à 200 V».

Dans certains domaines, le terme anglais est NOTE 2 «nominal range».

4.5 (5.2)

étendue de mesure, f étendue nominale, f

valeur absolue de la différence entre les valeurs extrêmes d'un intervalle nominal des indications

EXEMPLE Pour un intervalle nominal des indications de -10 V à +10 V, l'étendue de mesure est 20 V.

NOTE En anglais, l'étendue de mesure est quelquefois dénommée «span of a nominal interval». En français, le terme «intervalle de mesure» est parfois improprement employé.

4.6 (5.3)

valeur nominale, f

valeur arrondie ou approximative d'une grandeur caractéristique d'un instrument de mesure ou d'un système de mesure, qui sert de guide pour son utilisation appropriée

EXEMPLE 1 La valeur 100 Ω marquée sur une résistance étalon.

EXEMPLE 2 La valeur 1 000 ml marquée sur une fiole jaugée à un trait.

EXAMPLE 3 0.1 mol/l as the nominal quantity value for amount-of-substance concentration of a solution of hydrogen chloride, HCl.

EXAMPLE 4 -20 °C as a maximum Celsius temperature for storage.

NOTE "Nominal quantity value" and "nominal value" should not be used for "nominal property value".

4.7 (5.4) measuring interval

working interval

set of values of quantities of the same kind that can be measured by a given measuring instrument or measuring system with specified instrumental measurement uncertainty, under defined conditions

NOTE 1 In some fields, the term is "measuring range" or "measurement range".

NOTE 2 The lower limit of a measuring interval should not be confused with **detection limit**.

4.8 steady-state operating condition

operating condition of a **measuring instrument** or **measuring system** in which the relation established by **calibration** remains valid even for a **measurand** varying with time

4.9 (5.5)

rated operating condition

operating condition that must be fulfilled during measurement in order that a measuring instrument or measuring system perform as designed

NOTE Rated operating conditions generally specify intervals of **values** for a **quantity** being measured and for any **influence quantity**.

EXEMPLE 3 La valeur 0,1 mol/l de la concentration en quantité de matière d'une solution d'acide chlorhydrique, HCl.

EXEMPLE 4 La valeur –20 °C d'une température Celsius maximale de stockage.

NOTE En anglais, il convient de ne pas utiliser «nominal quantity value» et «nominal value» pour la valeur d'une **propriété qualitative** (en anglais «nominal property value»).

4.7 (5.4)

intervalle de mesure, m

ensemble des valeurs de grandeurs d'une même nature qu'un instrument de mesure ou un système de mesure donné peut mesurer avec une incertitude instrumentale spécifiée, dans des conditions déterminées

NOTE 1 Dans certains domaines, le terme anglais est «measuring range» ou «measurement range». En français, le terme «étendue de mesure» est parfois improprement employé.

NOTE 2 Il convient de ne pas confondre la limite inférieure d'un intervalle de mesure avec la limite de détection.

4.8

condition de régime établi, f condition de régime permanent, f

condition de fonctionnement d'un **instrument de mesure** ou d'un **système de mesure** dans laquelle la relation établie par un **étalonnage** reste valable même pour un **mesurande** qui varie en fonction du temps

4.9 (5.5)

condition assignée de fonctionnement, f condition de fonctionnement qui doit être satisfaite pendant un **mesurage** pour qu'un **instrument de mesure** ou un **système de mesure** fonctionne conformément à sa conception

NOTE Les conditions assignées de fonctionnement spécifient généralement des intervalles de valeurs pour la grandeur mesurée et pour les grandeurs d'influence.

4.10 (5.6)

limiting operating condition

extreme operating condition that a **measuring instrument** or **measuring system** is required to withstand without damage, and without degradation of specified metrological properties, when it is subsequently operated under its **rated operating conditions**

NOTE 1 Limiting conditions for storage, transport or operation can differ.

NOTE 2 Limiting conditions can include limiting values of a quantity being measured and of any influence quantity.

4.11 (5.7)

reference operating condition reference condition

operating condition prescribed for evaluating the performance of a measuring instrument or measuring system or for comparison of measurement results

NOTE 1 Reference operating conditions specify intervals of values of the measurand and of the influence quantities.

NOTE 2 In IEC 60050-300, item 311-06-02, the term "reference condition" refers to an operating condition under which the specified **instrumental measurement uncertainty** is the smallest possible.

4.12 (5.10)

sensitivity of a measuring system sensitivity

quotient of the change in an **indication** of a **measuring system** and the corresponding change in a **value** of a **quantity** being measured

NOTE 1 Sensitivity of a measuring system can depend on the value of the quantity being measured.

NOTE 2 The change considered in a value of a quantity being measured must be large compared with the **resolution**.

4.10 (5.6)

condition limite de fonctionnement, f condition limite. f

condition de fonctionnement extrême qu'un instrument de mesure ou un système de mesure doit pouvoir supporter sans dommage et sans dégradation de propriétés métrologiques spécifiées, lorsqu'il est ensuite utilisé dans ses conditions assignées de fonctionnement

NOTE 1 Les conditions limites de fonctionnement peuvent être différentes pour le stockage, le transport et le fonctionnement.

NOTE 2 Les conditions limites de fonctionnement peuvent comprendre des valeurs limites pour la grandeur mesurée et pour les grandeurs d'influence.

4.11 (5.7)

condition de fonctionnement de référence, f

condition de référence, f

condition de fonctionnement prescrite pour évaluer les performances d'un **instrument de mesure** ou d'un **système de mesure** ou pour comparer des **résultats de mesure**

NOTE 1 Les conditions de fonctionnement de référence spécifient des intervalles de valeurs du mesurande et des grandeurs d'influence.

NOTE 2 Dans la CEI 60050-300, nº 311-06-02, le terme «condition de référence» désigne une condition de fonctionnement dans laquelle l'**incertitude instrumentale** spécifiée est la plus petite possible.

4.12 (5.10)

sensibilité, f

quotient de la variation d'une **indication** d'un **système de mesure** par la variation correspondante de la **valeur** de la **grandeur** mesurée

NOTE 1 La sensibilité peut dépendre de la valeur de la grandeur mesurée.

NOTE 2 La variation de la valeur de la grandeur mesurée doit être grande par rapport à la **résolution**.

4 13

selectivity of a measuring system selectivity

property of a measuring system, used with a specified measurement procedure, whereby it provides measured quantity values for one or more measurands such that the values of each measurand are independent of other measurands or other quantities in the phenomenon, body, or substance being investigated

EXAMPLE 1 Capability of a measuring system including a mass spectrometer to measure the ion current ratio generated by two specified compounds without disturbance by other specified sources of electric current.

EXAMPLE 2 Capability of a measuring system to measure the power of a signal component at a given frequency without being disturbed by signal components or other signals at other frequencies.

EXAMPLE 3 Capability of a receiver to discriminate between a wanted signal and unwanted signals, often having frequencies slightly different from the frequency of the wanted signal.

EXAMPLE 4 Capability of a measuring system for ionizing radiation to respond to a given radiation to be measured in the presence of concomitant radiation.

EXAMPLE 5 Capability of a measuring system to measure the amount-of-substance concentration of creatininium in blood plasma by a Jaffé procedure without being influenced by the glucose, urate, ketone, and protein concentrations.

EXAMPLE 6 Capability of a mass spectrometer to measure the amount-of-substance abundance of the ²⁸Si isotope and of the ³⁰Si isotope in silicon from a geological deposit without influence between the two, or from the ²⁹Si isotope.

NOTE 1 In physics, there is often only one measurand; the other quantities are of the same **kind** as the measurand, and they are input quantities to the measuring system.

NOTE 2 In chemistry, the measured quantities often involve different components in the system undergoing measurement and these quantities are not necessarily of the same kind.

NOTE 3 In chemistry, selectivity of a measuring system is usually obtained for quantities with selected components in concentrations within stated intervals.

NOTE 4 Selectivity as used in physics (see Note 1) is a concept close to specificity as it is sometimes used in chemistry.

4.13 sélectivité, f

propriété d'un système de mesure, utilisant une procédure de mesure spécifiée, selon laquelle le système fournit des valeurs mesurées pour un ou plusieurs mesurandes, telles que les valeurs de chaque mesurande sont indépendantes des autres mesurandes ou d'autres grandeurs dans le phénomène, le corps ou la substance en cours d'examen

EXEMPLE 1 Aptitude d'un système de mesure comprenant un spectromètre de masse à mesurer le rapport des courants ioniques produits par deux composés spécifiés sans dépendre d'autres sources spécifiées de courant électrique.

EXEMPLE 2 Aptitude d'un système de mesure à mesurer la puissance d'une composante d'un signal à une fréquence donnée sans perturbation par des composantes du signal ou par d'autres signaux à d'autres fréquences.

EXEMPLE 3 Aptitude d'un récepteur à discerner un signal désiré de signaux non désirés, qui ont souvent des fréquences légèrement différentes de la fréquence du signal désiré.

EXEMPLE 4 Aptitude d'un système de mesure de rayonnement ionisant à répondre à un rayonnement particulier à mesurer en présence d'un rayonnement concomitant.

EXEMPLE 5 Aptitude d'un système de mesure à mesurer la concentration en quantité de matière de créatinine dans le plasma sanguin par une procédure de Jaffé sans être influencé par les concentrations de glucose, d'urate, de cétone et de protéines.

EXEMPLE 6 Aptitude d'un spectromètre de masse à mesurer les abondances en quantité de matière de l'isotope ²⁸Si et de l'isotope ³⁰Si dans du silicium provenant d'un dépôt géologique sans influence entre eux ou par l'isotope ²⁹Si.

NOTE 1 En physique, il y a souvent un seul mesurande; les autres grandeurs sont de même **nature** que le mesurande et sont appliquées à l'entrée du système de mesure.

NOTE 2 En chimie, les grandeurs mesurées impliquent souvent différents constituants dans le système en cours de mesurage et ces grandeurs ne sont pas nécessairement de même nature.

NOTE 3 En chimie, la sélectivité d'un système de mesure est généralement obtenue pour des grandeurs associées à des constituants sélectionnés dont les concentrations sont dans des intervalles déterminés.

NOTE 4 Le concept de sélectivité en physique (voir Note 1) est voisin de celui de spécificité, tel qu'il est quelquefois utilisé en chimie.

4.14

resolution

smallest change in a **quantity** being measured that causes a perceptible change in the corresponding **indication**

NOTE Resolution can depend on, for example, noise (internal or external) or friction. It may also depend on the **value** of a quantity being measured.

4.15 (5.12)

resolution of a displaying device

smallest difference between displayed **indications** that can be meaningfully distinguished

4.16 (5.11)

discrimination threshold

largest change in a value of a quantity being measured that causes no detectable change in the corresponding indication

NOTE Discrimination threshold may depend on, e.g. noise (internal or external) or friction. It can also depend on the value of the quantity being measured and how the change is applied.

4.17 (5.13)

dead band

maximum interval through which a **value** of a **quantity** being measured can be changed in both directions without producing a detectable change in the corresponding **indication**

NOTE Dead band can depend on the rate of change.

4.18 (4.15 Note 1) detection limit

limit of detection

measured quantity value, obtained by a given measurement procedure, for which the probability of falsely claiming the absence of a component in a material is β , given a probability α of falsely claiming its presence

NOTE 1 IUPAC recommends default values for α and β equal to 0.05.

NOTE 2 The abbreviation LOD is sometimes used.

NOTE 3 The term "sensitivity" is discouraged for 'detection limit'.

4.14

résolution, f

plus petite variation de la **grandeur** mesurée qui produit une variation perceptible de l'**indication** correspondante

NOTE La résolution peut dépendre, par exemple, du bruit (interne ou externe) ou du frottement. Elle peut aussi dépendre de la **valeur** de la grandeur mesurée.

4.15 (5.12)

résolution d'un dispositif afficheur, f

plus petite différence entre **indications** affichées qui peut être perçue de manière significative

4.16 (5.11)

seuil de discrimination, m seuil de mobilité, m

mobilité, f

variation la plus grande de la valeur d'une grandeur mesurée qui ne produit aucune variation détectable de l'indication correspondante

NOTE Le seuil de discrimination peut dépendre, par exemple, du bruit (interne ou externe) ou du frottement. Il peut aussi dépendre de la valeur de la grandeur mesurée et de la manière dont la variation est appliquée.

4.17 (5.13)

zone morte, f

intervalle maximal à l'intérieur duquel on peut faire varier la valeur de la grandeur mesurée dans les deux sens sans provoquer de variation détectable de l'indication correspondante

NOTE La zone morte peut dépendre de la vitesse de la variation.

4.18

limite de détection, f

valeur mesurée, obtenue par une procédure de mesure donnée, pour laquelle la probabilité de déclarer faussement l'absence d'un constituant dans un matériau est β , étant donnée la probabilité α de déclarer faussement sa présence

NOTE 1 L'UICPA recommande des valeurs par défaut de α et β égales à 0,05.

NOTE 2 [Applicable uniquement au texte anglais].

NOTE 3 Le terme «sensibilité» est à proscrire au sens de limite de détection.

4.19 (5.14)

stability of a measuring instrument stability

property of a measuring instrument, whereby its metrological properties remain constant in time

NOTE Stability may be quantified in several ways.

EXAMPLE 1 In terms of the duration of a time interval over which a metrological property changes by a stated amount.

EXAMPLE 2 In terms of the change of a property over a stated time interval.

4.20 (5.25)

instrumental bias

average of replicate indications minus a reference quantity value

4.21 (5.16)

instrumental drift

continuous or incremental change over time in indication, due to changes in metrological properties of a measuring instrument

NOTE Instrumental drift is related neither to a change in a quantity being measured nor to a change of any recognized influence quantity.

4.22

variation due to an influence quantity

difference in indication for a given measured quantity value, or in quantity values supplied by a material measure, when an influence quantity assumes successively two different quantity values

4.23 (5.17)

step response time

duration between the instant when an input quantity value of a measuring instrument or measuring system is subjected to an abrupt change between two specified constant quantity values and the instant when a corresponding indication settles within specified limits around its final steady value

4.19 (5.14)

stabilité. f constance, f

propriété d'un instrument de mesure selon laquelle celui-ci conserve ses propriétés métrologiques constantes au cours du temps

NOTE La stabilité d'un instrument de mesure peut être exprimée quantitativement de plusieurs façons.

EXEMPLE 1 Par la durée d'un intervalle de temps au cours duquel une propriété métrologique évolue d'une quantité donnée.

EXEMPLE 2 Par la variation d'une propriété au cours d'un intervalle de temps déterminé.

4.20 (5.25)

biais instrumental, m

erreur de justesse d'un instrument, f

différence entre la moyenne d'indications répétées et une valeur de référence

4.21 (5.16)

dérive instrumentale, f

variation continue ou incrémentale dans le temps d'une indication, due à des variations des propriétés métrologiques d'un instrument de mesure

NOTE La dérive instrumentale n'est liée ni à une variation de la grandeur mesurée, ni à une variation d'une grandeur d'influence identifiée.

4.22

variation due à une grandeur d'influence, f différence entre les indications qui correspondent à une même valeur mesurée, ou entre les valeurs fournies par une mesure matérialisée, lorsqu'une grandeur d'influence prend successivement deux valeurs différentes

4.23 (5.17)

temps de réponse à un échelon, m

durée entre l'instant où une valeur d'entrée d'un instrument de mesure ou d'un système de mesure subit un changement brusque d'une valeur constante spécifiée à une autre et l'instant où l'indication correspondante se maintient entre deux limites spécifiées autour de sa valeur finale en régime établi

4.24

instrumental measurement uncertainty component of measurement uncertainty arising from a measuring instrument or measuring system in use

NOTE 1 Instrumental measurement uncertainty is obtained through **calibration** of a measuring instrument or measuring system, except for a **primary measurement standard** for which other means are used.

NOTE 2 Instrumental measurement uncertainty is used in a Type B evaluation of measurement uncertainty.

NOTE 3 Information relevant to instrumental measurement uncertainty may be given in the instrument specifications.

4.25 (5.19) accuracy class

class of measuring instruments or measuring systems that meet stated metrological requirements that are intended to keep measurement errors or instrumental measurement uncertainties within specified limits under specified operating conditions

NOTE 1 An accuracy class is usually denoted by a number or symbol adopted by convention.

NOTE 2 Accuracy class applies to material measures.

4.26 (5.21)

maximum permissible measurement error maximum permissible error limit of error

extreme value of measurement error, with respect to a known reference quantity value, permitted by specifications or regulations for a given measurement, measuring instrument, or measuring system

NOTE 1 Usually, the term "maximum permissible errors" or "limits of error" is used where there are two extreme values.

NOTE 2 The term "tolerance" should not be used to designate 'maximum permissible error'.

4.27 (5.22)

datum measurement error datum error

measurement error of a measuring instrument or measuring system at a specified measured quantity value

4.24

incertitude instrumentale, f

composante de l'incertitude de mesure qui provient de l'instrument de mesure ou du système de mesure utilisé

NOTE 1 L'incertitude instrumentale est obtenue par **étalonnage** de l'instrument de mesure ou du système de mesure, sauf pour un **étalon primaire**, pour lequel on utilise d'autres moyens.

NOTE 2 L'incertitude instrumentale est utilisée dans une évaluation de type B de l'incertitude.

NOTE 3 Les informations relatives à l'incertitude instrumentale peuvent être données dans les spécifications de l'instrument.

4.25 (5.19)

classe d'exactitude, f

classe d'instruments de mesure ou de systèmes de mesure qui satisfont à certaines exigences métrologiques destinées à maintenir les erreurs de mesure ou les incertitudes instrumentales entre des limites spécifiées dans des conditions de fonctionnement spécifiées

NOTE 1 Une classe d'exactitude est habituellement indiquée par un nombre ou un symbole adopté par convention

NOTE 2 Le concept de classe d'exactitude s'applique aux mesures matérialisées.

4.26 (5.21)

erreur maximale tolérée, f limite d'erreur. f

valeur extrême de l'erreur de mesure, par rapport à une valeur de référence connue, qui est tolérée par les spécifications ou règlements pour un mesurage, un instrument de mesure ou un système de mesure donné

NOTE 1 Les termes «erreurs maximales tolérées» ou «limites d'erreur» sont généralement utilisés lorsqu'il y a deux valeurs extrêmes.

NOTE 2 Il convient de ne pas utiliser le terme «tolérance» pour désigner l'erreur maximale tolérée.

4.27 (5.22)

erreur au point de contrôle, f

erreur de mesure d'un instrument de mesure ou d'un système de mesure pour une valeur mesurée spécifiée 4.28 (5.23) zero error

datum measurement error where the specified measured quantity value is zero

NOTE Zero error should not be confused with absence of **measurement error**.

4.29

null measurement uncertainty

measurement uncertainty where the specified measured quantity value is zero

NOTE 1 Null measurement uncertainty is associated with a null or near zero **indication** and covers an interval where one does not know whether the **measurand** is too small to be detected or the indication of the **measuring instrument** is due only to noise.

NOTE 2 The concept of 'null measurement uncertainty' also applies when a difference is obtained between **measurement** of a sample and a blank.

4.30

calibration diagram

graphical expression of the relation between **indication** and corresponding **measurement result**

NOTE 1 A calibration diagram is the strip of the plane defined by the axis of the indication and the axis of measurement result, that represents the relation between an indication and a set of **measured quantity values**. A one-to-many relation is given, and the width of the strip for a given indication provides the **instrumental measurement uncertainty**.

NOTE 2 Alternative expressions of the relation include a **calibration curve** and associated **measurement uncertainty**, a calibration table, or a set of functions.

NOTE 3 This concept pertains to a **calibration** when the instrumental measurement uncertainty is large in comparison with the measurement uncertainties associated with the **quantity values** of **measurement standards**.

4.31

calibration curve

expression of the relation between **indication** and corresponding **measured quantity value**

NOTE A calibration curve expresses a one-to-one relation that does not supply a **measurement result** as it bears no information about the **measurement uncertainty**.

4.28 (5.23) erreur à zéro, f

erreur au point de contrôle lorsque la valeur mesurée spécifiée est nulle

NOTE Il convient de ne pas confondre l'erreur à zéro avec l'absence d'erreur de mesure.

4.29

incertitude de mesure à zéro, f

incertitude de mesure lorsque la valeur mesurée spécifiée est nulle

NOTE 1 L'incertitude de mesure à zéro est associée à une **indication** nulle ou presque nulle et correspond à l'intervalle dans lequel on ne sait pas si le **mesurande** est trop petit pour être détecté ou si l'indication de l'**instrument de mesure** est due seulement au bruit.

NOTE 2 Le concept d'incertitude de mesure à zéro s'applique aussi lorsqu'une différence est obtenue entre le **mesurage** d'un spécimen et un blanc.

4.30

diagramme d'étalonnage, m

expression graphique de la relation entre une **indication** et le **résultat de mesure** correspondant

NOTE 1 Un diagramme d'étalonnage est la bande du plan défini par l'axe des indications et l'axe des résultats de mesure, qui représente la relation entre une indication et un ensemble de **valeurs mesurées**. Il correspond à une relation multivoque; la largeur de la bande pour une indication donnée fournit l'incertitude instrumentale.

NOTE 2 D'autres expressions de la relation consistent en une **courbe d'étalonnage** avec les **incertitudes de mesure** associées, en une table d'étalonnage ou en un ensemble de fonctions.

NOTE 3 Le concept est relatif à un **étalonnage** quand l'incertitude instrumentale est grande par rapport aux incertitudes de mesure associées aux **valeurs** des **étalons**.

4.31

courbe d'étalonnage, f

expression de la relation entre une **indication** et la **valeur mesurée** correspondante

NOTE Une courbe d'étalonnage exprime une relation biunivoque qui ne fournit pas un **résultat de mesure** puisqu'elle ne contient aucune information sur l'**incertitude de mesure**.

5 Measurement standards (Etalons)

5.1 (6.1)

measurement standard etalon

realization of the definition of a given quantity, with stated quantity value and associated measurement uncertainty, used as a reference

EXAMPLE 1 1 kg mass measurement standard with an associated standard measurement uncertainty of 3 μg .

EXAMPLE 2 100 Ω measurement standard resistor with an associated standard measurement uncertainty of 1 $\mu\Omega$.

EXAMPLE 3 Caesium frequency standard with a relative standard measurement uncertainty of 2×10^{-15} .

EXAMPLE 4 Standard buffer solution with a pH of 7.072 with an associated standard measurement uncertainty of 0.006.

EXAMPLE 5 Set of reference solutions of cortisol in human serum having a certified quantity value with measurement uncertainty for each solution.

EXAMPLE 6 **Reference material** providing quantity values with measurement uncertainties for the mass concentration of each of ten different proteins.

NOTE 1 A "realization of the definition of a given quantity" can be provided by a **measuring system**, a **material measure**, or a reference material.

NOTE 2 A measurement standard is frequently used as a reference in establishing measured quantity values and associated measurement uncertainties for other quantities of the same kind, thereby establishing metrological traceability through calibration of other measurement standards, measuring instruments, or measuring systems.

NOTE 3 The term "realization" is used here in the most general meaning. It denotes three procedures of "realization". The first one consists in the physical realization of the **measurement unit** from its definition and is realization sensu stricto. The second, termed "reproduction", consists not in realizing the measurement unit from its definition but in setting up a highly reproducible measurement standard based on a physical phenomenon, as it happens, e.g. in case of use of frequency-stabilized lasers to establish a measurement standard for the metre, of the Josephson effect for the volt or of the quantum Hall effect for the ohm. The third procedure consists in adopting a material measure as a measurement standard. It occurs in the case of the measurement standard of 1 kg.

NOTE 4 A standard measurement uncertainty associated with a measurement standard is always a component of the **combined standard measurement uncertainty** (see GUM:1995, 2.3.4) in a **measurement result** obtained using the measurement standard.

5 Étalons

5.1 (6.1) étalon, m

réalisation de la définition d'une **grandeur** donnée, avec une **valeur** déterminée et une **incertitude de mesure** associée, utilisée comme référence

EXEMPLE 1 Étalon de masse de 1 kg avec une **incertitude-type** associée de 3 µg.

EXEMPLE 2 Résistance étalon de 100 Ω avec une incertitude-type associée de 1 $\mu\Omega$.

EXEMPLE 3 Étalon de fréquence à césium avec une incertitude-type associée de 2×10^{-15} .

EXEMPLE 4 Solution tampon de référence ayant un pH de 7,072 avec une incertitude-type associée de 0,006.

EXEMPLE 5 Série de solutions de référence de cortisol dans du sérum humain, dont chaque solution a une valeur certifiée avec une incertitude de mesure.

EXEMPLE 6 **Matériau de référence** fournissant des valeurs avec les incertitudes de mesure associées pour la concentration en masse de dix protéines différentes.

NOTE 1 La «réalisation de la définition d'une grandeur donnée» peut être fournie par un système de mesure, une mesure matérialisée ou un matériau de référence.

NOTE 2 Un étalon sert souvent de référence dans l'obtention de valeurs mesurées et d'incertitudes de mesure associées pour d'autres grandeurs de même nature, établissant ainsi une traçabilité métrologique par l'intermédiaire de l'étalonnage d'autres étalons, instruments de mesure ou systèmes de mesure.

NOTE 3 Le terme «réalisation» est employé ici dans son sens le plus général. Il désigne trois procédures de réalisation. La première, la réalisation stricto sensu, est la réalisation physique de l'unité de mesure à partir de sa définition. La deuxième, appelée «reproduction», consiste, non pas à réaliser l'unité à partir de sa définition, mais à construire un étalon hautement reproductible fondé sur un phénomène physique, par exemple l'emploi de lasers stabilisés en fréquence pour construire un étalon du mètre, l'emploi de l'effet Josephson pour le volt ou de l'effet Hall quantique pour l'ohm. La troisième procédure consiste à adopter une mesure matérialisée comme étalon. C'est le cas de l'étalon de 1 kg.

NOTE 4 L'incertitude-type associée à un étalon est toujours une composante de l'incertitude-type composée (voir le GUM:1995, 2.3.4) dans un résultat de mesure obtenu en utilisant l'étalon. Cette composante est souvent petite par rapport à d'autres composantes de l'incertitude-type composée.

NOTE 5 La valeur de la grandeur et l'incertitude de mesure doivent être déterminées au moment où l'étalon est utilisé.

Frequently, this component is small compared with other components of the combined standard measurement uncertainty.

NOTE 5 Quantity value and measurement uncertainty must be determined at the time when the measurement standard is used.

NOTE 6 Several quantities of the same kind or of different kinds may be realized in one device which is commonly also called a measurement standard.

NOTE 7 The word "embodiment" is sometimes used in the English language instead of "realization".

NOTE 8 In science and technology, the English word "standard" is used with at least two different meanings: as a specification, technical recommendation, or similar normative document (in French "norme") and as a measurement standard (in French "étalon"). This Vocabulary is concerned solely with the second meaning.

NOTE 9 The term "measurement standard" is sometimes used to denote other metrological tools, e.g. 'software measurement standard' (see ISO 5436-2).

NOTE 6 Plusieurs grandeurs de même nature ou de natures différentes peuvent être réalisées à l'aide d'un seul dispositif, appelé aussi étalon.

NOTE 7 Le mot «embodiment» est quelquefois utilisé en anglais à la place de «realization».

NOTE 8 Dans la science et la technologie, le mot anglais «standard» est utilisé avec au moins deux significations différentes: celle de spécification, recommandation technique ou autre document normatif, et celle d'étalon (en anglais «measurement standard»). Seule la deuxième signification relève du présent Vocabulaire.

NOTE 9 Le terme «étalon» est parfois utilisé pour désigner d'autres outils métrologiques, par exemple un étalon logiciel (voir l'ISO 5436-2).

5.2 (6.2)

international measurement standard

measurement standard recognized by signatories to an international agreement and intended to serve worldwide

EXAMPLE 1 The international prototype of the kilogram.

EXAMPLE 2 Chorionic gonadotrophin, World Health Organization (WHO) 4th international standard 1999, 75/589, 650 International Units per ampoule.

EXAMPLE 3 VSMOW2 (Vienna Standard Mean Ocean Water) distributed by the International Atomic Energy Agency (IAEA) for differential stable isotope amount-of-substance ratio **measurements**.

5.3 (6.3)

national measurement standard national standard

measurement standard recognized by national authority to serve in a state or economy as the basis for assigning quantity values to other measurement standards for the kind of quantity concerned

5.4 (6.4)

primary measurement standard primary standard

measurement standard established using a primary reference measurement procedure, or created as an artifact, chosen by convention

5.2 (6.2)

étalon international, m

étalon reconnu par les signataires d'un accord international pour une utilisation mondiale

EXEMPLE 1 Le prototype international du kilogramme.

EXEMPLE 2 Gonadotrophine chorionique, 4^e étalon international de l'Organisation mondiale de la santé (OMS), 1999, 75/589, 650 unités internationales par ampoule.

EXEMPLE 3 Eau océanique moyenne normalisée de Vienne (VSMOW2), distribuée par l'Agence internationale pour l'énergie atomique (AIEA) pour des **mesurages** de rapports molaires différentiels relatifs d'isotopes stables.

5.3 (6.3)

étalon national, m

étalon reconnu par une autorité nationale pour servir, dans un état ou une économie, comme base à l'attribution de valeurs à d'autres étalons de grandeurs de la même nature

5.4 (6.4)

étalon primaire, m

étalon établi à l'aide d'une procédure de mesure primaire ou créé comme objet choisi par convention

EXAMPLE 1 Primary measurement standard of amount-of-substance concentration prepared by dissolving a known amount of substance of a chemical component to a known volume of solution.

EXAMPLE 2 Primary measurement standard for pressure based on separate **measurements** of force and area.

EXAMPLE 3 Primary measurement standard for isotope amount-of-substance ratio measurements, prepared by mixing known amount-of-substances of specified isotopes.

EXAMPLE 4 Triple-point-of-water cell as a primary measurement standard of thermodynamic temperature.

EXAMPLE 5 The international prototype of the kilogram as an artifact, chosen by convention.

EXEMPLE 2 Étalon primaire de pression fondé sur des **mesurages** séparés de force et d'aire.

quantité de matière préparé en dissolvant une quantité de

matière connue d'une substance chimique dans un

Étalon primaire de concentration en

EXEMPLE 3 Étalon primaire pour les mesurages du rapport molaire d'isotopes, préparé en mélangeant des quantités de matière connues d'isotopes spécifiés.

EXEMPLE 4 Étalon primaire de température thermodynamique constitué d'une cellule à point triple de l'eau.

EXEMPLE 5 Le prototype international du kilogramme en tant qu'objet choisi par convention.

5.5 (6.5)

secondary measurement standard secondary standard

measurement standard established through calibration with respect to a primary measurement standard for a quantity of the same kind

NOTE 1 Calibration may be obtained directly between a primary measurement standard and a secondary measurement standard, or involve an intermediate **measuring system** calibrated by the primary measurement standard and assigning a **measurement result** to the secondary measurement standard.

NOTE 2 A measurement standard having its **quantity value** assigned by a ratio **primary reference measurement procedure** is a secondary measurement standard.

5.5 (6.5)

étalon secondaire, m

volume connu de solution.

étalon établi par l'intermédiaire d'un étalonnage par rapport à un étalon primaire d'une grandeur de même nature

NOTE 1 On peut obtenir directement la relation entre l'étalon primaire et l'étalon secondaire ou mettre en œuvre un système de mesure intermédiaire étalonné par l'étalon primaire, qui assigne un résultat de mesure à l'étalon secondaire.

NOTE 2 Un étalon dont la **valeur** est assignée par une **procédure de mesure primaire** de mesure de rapport est un étalon secondaire.

5.6 (6.6)

reference measurement standard reference standard

measurement standard designated for the calibration of other measurement standards for quantities of a given kind in a given organization or at a given location

5.6 (6.6)

étalon de référence, m

étalon conçu pour l'étalonnage d'autres étalons de grandeurs de même nature dans une organisation donnée ou en un lieu donné

5.7 (6.7)

working measurement standard working standard

measurement standard that is used routinely to calibrate or verify measuring instruments or measuring systems

NOTE 1 A working measurement standard is usually calibrated with respect to a **reference measurement standard**.

NOTE 2 In relation to **verification**, the terms "check standard" or "control standard" are also sometimes used.

5.7 (6.7)

étalon de travail, m

étalon qui est utilisé couramment pour étalonner ou contrôler des instruments de mesure ou des systèmes de mesure

NOTE 1 Un étalon de travail est habituellement étalonné par rapport à un **étalon de référence**.

NOTE 2 Un étalon de travail servant à la **vérification** est aussi désigné comme «étalon de vérification» ou «étalon de contrôle».

5.8 (6.9)

travelling measurement standard travelling standard

measurement standard, sometimes of special construction, intended for transport between different locations

EXAMPLE Portable battery-operated caesium-133 frequency measurement standard.

5.9 (6.8)

transfer measurement device transfer device

device used as an intermediary to compare measurement standards

NOTE Sometimes, measurement standards are used as transfer devices.

5.10

intrinsic measurement standard intrinsic standard

measurement standard based on an inherent and reproducible property of a phenomenon or substance

EXAMPLE 1 Triple-point-of-water cell as an intrinsic measurement standard of thermodynamic temperature.

EXAMPLE 2 Intrinsic measurement standard of electric potential difference based on the Josephson effect.

EXAMPLE 3 Intrinsic measurement standard of electric resistance based on the quantum Hall effect.

EXAMPLE 4 Sample of copper as an intrinsic measurement standard of electric conductivity.

NOTE 1 A **quantity value** of an intrinsic measurement standard is assigned by consensus and does not need to be established by relating it to another measurement standard of the same type. Its **measurement uncertainty** is determined by considering two components: the first associated with its consensus quantity value and the second associated with its construction, implementation, and maintenance.

NOTE 2 An intrinsic measurement standard usually consists of a system produced according to the requirements of a consensus procedure and subject to periodic **verification**. The consensus procedure may contain provisions for the application of **corrections** necessitated by the implementation.

NOTE 3 Intrinsic measurement standards that are based on quantum phenomena usually have outstanding **stability**.

NOTE 4 The adjective "intrinsic" does not mean that such a measurement standard may be implemented and used without special care or that such a measurement standard is immune to internal and external influences.

5.8 (6.9)

étalon voyageur, m

étalon, parfois de construction spéciale, destiné au transport en des lieux différents

EXEMPLE Étalon de fréquence à césium 133, portatif et fonctionnant sur accumulateur.

5.9 (6.8)

dispositif de transfert, m

dispositif utilisé comme intermédiaire pour comparer entre eux des **étalons**

NOTE Des étalons peuvent parfois servir de dispositifs de transfert.

5.10

étalon intrinsèque, m

étalon fondé sur une propriété intrinsèque et reproductible d'un phénomène ou d'une substance

EXEMPLE 1 Étalon intrinsèque de température thermodynamique constitué d'une cellule à point triple de l'eau.

EXEMPLE 2 Étalon intrinsèque de différence de potentiel électrique fondé sur l'effet Josephson.

EXEMPLE 3 Étalon intrinsèque de résistance électrique fondé sur l'effet Hall quantique.

EXEMPLE 4 Étalon intrinsèque de conductivité électrique constitué d'un spécimen de cuivre.

NOTE 1 La valeur d'un étalon intrinsèque est assignée par consensus et n'a pas besoin d'être établie en le reliant à un autre étalon de même type. Son incertitude de mesure est déterminée en prenant en compte deux composantes, l'une associée à la valeur de consensus et l'autre associée à la construction, la mise en œuvre et la maintenance.

NOTE 2 Un étalon intrinsèque consiste généralement en un système fabriqué conformément aux exigences d'une procédure de consensus et il est soumis à une **vérification** périodique. La procédure de consensus peut comprendre des dispositions pour appliquer les **corrections** nécessaires à la mise en œuvre.

NOTE 3 Les étalons intrinsèques fondés sur des phénomènes quantiques ont généralement une **stabilité** exceptionnelle.

NOTE 4 L'adjectif «intrinsèque» ne signifie pas que l'étalon peut être mis en œuvre et utilisé sans précautions particulières ou qu'il est protégé d'influences internes et externes.

5.11 (6.12)

conservation of a measurement standard maintenance of a measurement standard

set of operations necessary to preserve the metrological properties of a **measurement standard** within stated limits

NOTE Conservation commonly includes periodic **verification** of predefined metrological properties or **calibration**, storage under suitable conditions, and specified care in use.

5.12 calibrator

measurement standard used in calibration

NOTE The term "calibrator" is only used in certain fields.

5.13 (6.13) reference material RM

material, sufficiently homogeneous and stable with reference to specified properties, which has been established to be fit for its intended use in **measurement** or in examination of **nominal properties**

NOTE 1 Examination of a nominal property provides a nominal property value and associated uncertainty. This uncertainty is not a **measurement uncertainty**.

NOTE 2 Reference materials with or without assigned quantity values can be used for measurement precision control whereas only reference materials with assigned quantity values can be used for calibration or measurement trueness control.

NOTE 3 'Reference material' comprises materials embodying **quantities** as well as nominal properties.

EXAMPLE 1 Examples of reference materials embodying quantities:

- a) water of stated purity, the dynamic viscosity of which is used to calibrate viscometers;
- b) human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used only as a measurement precision control material;
- fish tissue containing a stated mass fraction of a dioxin, used as a calibrator.

EXAMPLE 2 Examples of reference materials embodying nominal properties:

- a) colour chart indicating one or more specified colours;
- b) DNA compound containing a specified nucleotide sequence;
- c) urine containing 19-androstenedione.

5.11 (6.12)

conservation d'un étalon, f maintenance d'un étalon, f

ensemble des opérations nécessaires à la préservation des propriétés métrologiques d'un **étalon** dans des limites déterminées

NOTE La conservation comprend habituellement une vérification périodique de propriétés métrologiques choisies ou un étalonnage, un stockage dans des conditions appropriées et des précautions particulières lors de l'utilisation.

5.12

étalon utilisé pour des étalonnages

NOTE En anglais, le terme «calibrator» n'est utilisé que dans certains domaines.

5.13 (6.13)

matériau de référence, m

MR

matériau suffisamment homogène et stable en ce qui concerne des propriétés spécifiées, qui a été préparé pour être adapté à son utilisation prévue pour un mesurage ou pour l'examen de propriétés qualitatives

NOTE 1 L'examen d'une propriété qualitative comprend l'attribution d'une valeur et de l'incertitude associée à un autre matériau. Cette incertitude n'est pas une incertitude de mesure.

NOTE 2 Des matériaux de référence avec ou sans valeurs assignées peuvent servir à contrôler la fidélité de mesure, tandis que seuls des matériaux à valeurs assignées peuvent servir à l'étalonnage ou au contrôle de la justesse de mesure.

NOTE 3 Les matériaux de référence comprennent des matériaux caractérisés par des **grandeurs** et des matériaux caractérisés par des propriétés qualitatives.

EXEMPLE 1 Exemples de matériaux de référence supports de grandeurs:

- a) eau de pureté déterminée, dont la viscosité dynamique est utilisée pour l'étalonnage de viscosimètres;
- b) sérum humain sans valeur assignée à la concentration de cholestérol intrinsèque, utilisé seulement pour le contrôle de la fidélité de mesure;
- c) tissu de poisson contenant une fraction massique déterminée de dioxine, utilisé comme étalon dans un étalonnage.

NOTE 4 A reference material is sometimes incorporated into a specially fabricated device.

EXAMPLE 1 Substance of known triple-point in a triple-point cell.

EXAMPLE 2 Glass of known optical density in a transmission filter holder.

EXAMPLE 3 Spheres of uniform size mounted on a microscope slide.

NOTE 5 Some reference materials have assigned quantity values that are metrologically traceable to a **measurement unit** outside a **system of units**. Such materials include vaccines to which International Units (IU) have been assigned by the World Health Organization.

NOTE 6 In a given **measurement**, a given reference material can only be used for either calibration or quality assurance.

NOTE 7 The specifications of a reference material should include its material traceability, indicating its origin and processing (Accred. Qual. Assur.:2006)^[45].

NOTE 8 ISO/REMCO has an analogous definition [45] but uses the term "measurement process" to mean 'examination' (ISO 15189:2007, 3.4), which covers both measurement of a quantity and examination of a nominal property.

5.14 (6.14) certified reference material CRM

reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures

EXAMPLE Human serum with assigned quantity value for the concentration of cholesterol and associated measurement uncertainty stated in an accompanying certificate, used as a calibrator or measurement trueness control material.

NOTE 1 'Documentation' is given in the form of a 'certificate' (see ISO Guide 31:2000).

NOTE 2 Procedures for the production and certification of certified reference materials are given, e.g. in ISO Guide 34 and ISO Guide 35.

EXEMPLE 2 Exemples de matériaux de référence supports de propriétés qualitatives:

- a) nuancier de couleurs indiquant une ou plusieurs couleurs spécifiées;
- b) ADN contenant une séquence spécifiée de nucléotides;
- c) urine contenant de la 19-androstènedione.

NOTE 4 Un matériau de référence est quelquefois incorporé dans un dispositif fabriqué spécialement.

EXEMPLE 1 Substance dont le point triple est connu dans une cellule triple point.

EXEMPLE 2 Verre de densité optique connue dans un support de filtre de transmission.

EXEMPLE 3 Sphères à granulométrie uniforme montées sur une lame de microscope.

NOTE 5 Certains matériaux de référence ont des valeurs assignées qui sont métrologiquement traçables à une **unité de mesure** en dehors d'un **système d'unités**. Ces matériaux comprennent des vaccins auxquels des unités internationales (UI) ont été assignées par l'Organisation mondiale de la santé.

NOTE 6 Dans un **mesurage** donné, un matériau de référence donné ne peut être utilisé que pour l'étalonnage ou pour l'assurance de la qualité.

NOTE 7 Il convient d'inclure dans les spécifications d'un matériau de référence sa traçabilité, qui indique son origine et son traitement (Accred. Qual. Assur.:2006)^[45].

NOTE 8 La définition de l'ISO/REMCO^[45] est analogue, mais utilise le terme «processus de mesure» pour signifier «examen» (ISO 15189:2007, 3.4) qui couvre à la fois un mesurage de la grandeur et l'examen d'une propriété qualitative.

5.14 (6.14)

matériau de référence certifié, **m** MRC

matériau de référence, accompagné d'une documentation délivrée par un organisme faisant autorité et fournissant une ou plusieurs valeurs de propriétés spécifiées avec les incertitudes et les traçabilités associées, en utilisant des procédures valables

EXEMPLE Sérum humain dont la valeur assignée à la concentration de cholestérol et l'incertitude de mesure associée sont indiquées dans un certificat et qui sert d'étalon dans un étalonnage ou de matériau de contrôle de la justesse de mesure.

NOTE 1 La documentation mentionnée est délivrée sous la forme d'un «certificat» (voir le Guide ISO 31:2000).

NOTE 2 Des procédures pour la production et la certification de matériaux de référence certifiés sont données, par exemple, dans les Guide ISO 34 et Guide ISO 35.

NOTE 3 In this definition, "uncertainty" covers both 'measurement uncertainty' and 'uncertainty associated with the value of a **nominal property**', such as for identity and sequence. "Traceability" covers both '**metrological traceability** of a quantity value' and 'traceability of a nominal property value'.

NOTE 4 Specified quantity values of certified reference materials require metrological traceability with associated measurement uncertainty (Accred. Qual. Assur.:2006) [45].

NOTE 5 ISO/REMCO has an analogous definition (Accred. Qual. Assur.:2006)^[45] but uses the modifiers "metrological" and "metrologically" to refer to both quantity and nominal property.

5.15

commutability of a reference material

property of a **reference material**, demonstrated by the closeness of agreement between the relation among the **measurement results** for a stated **quantity** in this material, obtained according to two given **measurement procedures**, and the relation obtained among the measurement results for other specified materials

NOTE 1 The reference material in question is usually a **calibrator** and the other specified materials are usually routine samples.

NOTE 2 The measurement procedures referred to in the definition are the one preceding and the one following the reference material (calibrator) in question in a **calibration hierarchy** (see ISO 17511).

NOTE 3 The stability of commutable reference materials should be monitored regularly.

5.16

reference data

data related to a property of a phenomenon, body, or substance, or to a system of components of known composition or structure, obtained from an identified source, critically evaluated, and verified for accuracy

EXAMPLE Reference data for solubility of chemical compounds as published by the IUPAC.

NOTE 1 In this definition, accuracy covers, for example, **measurement accuracy** and 'accuracy of a nominal property value'.

NOTE 2 "Data" is a plural form, "datum" is the singular. "Data" is commonly used in the singular sense, instead of "datum".

NOTE 3 Dans la définition, le terme «incertitude» peut désigner soit une incertitude de mesure, soit l'incertitude associée à la valeur d'une **propriété qualitative**, telle que l'identité ou la séquence. Le terme «traçabilité» peut désigner soit la **traçabilité métrologique** de la valeur d'une grandeur, soit la traçabilité de la valeur d'une propriété qualitative.

NOTE 4 Les valeurs de grandeurs spécifiées des matériaux de référence certifiés exigent une traçabilité métrologique avec une incertitude de mesure associée (voir Accred. Qual. Assur.:2006) [45].

NOTE 5 La définition de l'ISO/REMCO est analogue (Accred. Qual. Assur.:2006)^[45], mais utilise «métrologique» à la fois pour une grandeur et pour une propriété qualitative.

5.15

commutabilité d'un matériau de référence, f

propriété d'un matériau de référence, exprimée par l'étroitesse de l'accord entre, d'une part, la relation entre les résultats de mesure obtenus pour une grandeur déterminée de ce matériau en utilisant deux procédures de mesure données et, d'autre part, la relation entre les résultats de mesure pour d'autres matériaux spécifiés

NOTE 1 Le matériau de référence en question est généralement un **étalon** et les autres matériaux spécifiés sont généralement des spécimens courants.

NOTE 2 Les procédures de mesure mentionnées dans la définition sont celle qui précède et celle qui suit le matériau de référence utilisé comme étalon dans une hiérarchie d'étalonnage (voir l'ISO 17511).

NOTE 3 Il convient de vérifier régulièrement la stabilité des matériaux de référence commutables.

5.16

donnée de référence, f

donnée liée à une propriété d'un phénomène, d'un corps ou d'une substance, ou à un système de constituants de composition ou de structure connue, obtenue à partir d'une source identifiée, évaluée de façon critique et vérifiée en exactitude

EXEMPLE Données de référence relatives à la solubilité de composés chimiques, publiées par l'UICPA.

NOTE 1 Dans la définition, le terme «exactitude» peut désigner soit une **exactitude de mesure**, soit l'«exactitude de la valeur d'une propriété qualitative».

NOTE 2 En anglais, «data» est une forme plurielle dont le singulier est «datum». «Data» est couramment utilisé au sens singulier à la place de «datum».

5.17

standard reference data

reference data issued by a recognized authority

EXAMPLE 1 Values of the fundamental physical constants, as regularly evaluated and recommended by CODATA of ICSU.

EXAMPLE 2 Relative atomic mass values, also called atomic weight values, of the elements, as evaluated every two years by IUPAC-CIAAW, approved by the IUPAC General Assembly, and published in *Pure Appl. Chem*.

5.18 reference quantity value reference value

quantity value used as a basis for comparison with values of **quantities** of the same **kind**

NOTE 1 A reference quantity value can be a **true quantity value** of a **measurand**, in which case it is unknown, or a **conventional quantity value**, in which case it is known.

NOTE 2 A reference quantity value with associated **measurement uncertainty** is usually provided with reference to

- a) a material, e.g. a certified reference material,
- b) a device, e.g. a stabilized laser,
- c) a reference measurement procedure,
- d) a comparison of measurement standards.

5.17

donnée de référence normalisée, f

donnée de référence provenant d'une autorité reconnue

EXEMPLE 1 Valeurs des constantes physiques fondamentales, évaluées et recommandées régulièrement par le CODATA de l'ICSU.

EXEMPLE 2 Valeurs des masses atomiques relatives des éléments, appelées aussi valeurs des poids atomiques, évaluées tous les deux ans par l'UICPA-CIAAW, approuvées par l'Assemblée générale de l'UICPA et publiées dans *Pure Appl. Chem.*

5.18

valeur de référence, f

valeur d'une grandeur servant de base de comparaison pour les valeurs de grandeurs de même nature

NOTE 1 La valeur de référence peut être une valeur vraie d'un mesurande, et est alors inconnue, ou une valeur conventionnelle, et est alors connue.

NOTE 2 Une valeur de référence associée à son incertitude de mesure se rapporte généralement à

- a) un matériau, par exemple un matériau de référence certifié,
- b) un dispositif, par exemple un laser stabilisé,
- c) une procédure de mesure de référence,
- d) une comparaison d'étalons.

Annex A (informative)

Concept diagrams

The 12 concept diagrams in this informative Annex are intended to provide:

- a visual presentation of the relations between the concepts defined and termed in the preceding clauses;
- a possibility for checking whether the definitions offer adequate relations;
- a background for identifying further needed concepts; and
- a check that terms are sufficiently systematic.

It should be recalled, however, that a given concept may be describable by many characteristics and only essential delimiting characteristics are included in the definition.

The area available on a page limits the number of concepts that can be presented legibly, but all diagrams are in principle interrelated as indicated in each diagram by parenthetic references to other diagrams.

The relations used are of three types as defined by ISO 704 and ISO 1087-1. Two are hierarchical, i.e. having superordinate and subordinate concepts, the third is non-hierarchical.

The hierarchical *generic relation* (or genus-species relation) connects a generic concept and a specific concept; the latter inherits all characteristics of the former. The diagrams show such relations as a tree.

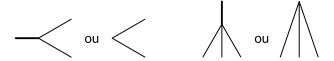
 $\overline{}$ or $\overline{}$ or $\overline{}$

where a short branch with three dots indicates that one or more other specific concepts exist, but are not included for presentation and a heavy starting line of a tree shows a separate terminological dimension. For example,

Annexe A (informative)

Schémas conceptuels

Les 12 schémas conceptuels de cette Annexe informative sont destinés à fournir


- une représentation visuelle des relations entre les concepts définis et désignés dans les articles précédents;
- une possibilité de vérifier si les définitions présentent des relations adéquates;
- un cadre pour identifier d'autres concepts nécessaires;
- une vérification du caractère suffisamment systématique des termes.

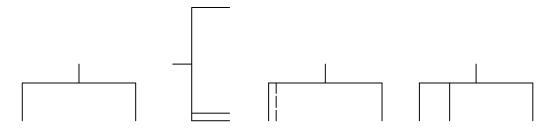
Il convient toutefois de rappeler qu'un concept donné peut être décrit par de nombreux caractères et que seuls les caractères essentiels distinctifs sont inclus dans la définition.

La surface disponible sur une page limite le nombre de concepts qu'il est possible de présenter d'une manière lisible, mais tous les schémas sont interconnectés en principe comme indiqué dans chaque schéma par des références entre parenthèses à d'autres schémas.

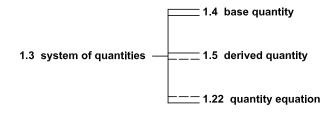
Les relations utilisées sont de trois types conformément à l'ISO 704 et à l'ISO 1087-1. Pour deux de ces types, les relations sont hiérarchiques et associent des concepts superordonnés et subordonnés. Les relations du troisième type sont non-hiérarchiques.

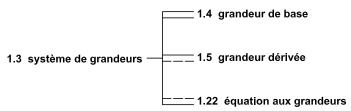
La relation hiérarchique désignée comme relation générique (ou relation genre-espèce) associe un concept générique et un concept spécifique; ce dernier hérite de tous les caractères du concept générique. Les schémas représentent ces relations sous la forme d'une arborescence

où une branche courte terminée par trois points indique qu'il existe un ou plusieurs autres concepts spécifiques qui ne sont pas représentés et où une branche en gras indique une dimension terminologique séparée. Par exemple

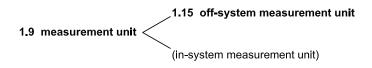

where a third concept might be 'off-system measurement unit'.

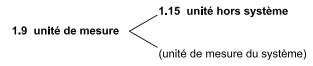
The partitive relation (or part-whole relation) is also hierarchical and connects a comprehensive concept to two or more partitive concepts which fitted together constitute the comprehensive concept. The diagrams show such relations as a rake or bracket, and a continued backline without a tooth means one or more further partitive concepts that are not discussed.


où un troisième concept pourrait être «unité hors système».

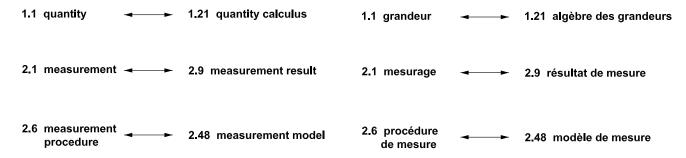

La relation partitive (ou relation partie-tout) est aussi une relation hiérarchique. Elle associe un concept intégrant et deux concepts partitifs ou plus dont l'assemblage constitue le concept intégrant. Les schémas représentent ces relations sous forme d'un râteau. Une ligne de base poursuivie sans dent indique qu'un ou plusieurs concepts partitifs n'ont pas été pris en compte.

A close-set double line indicates that several partitive concepts of a given type are involved and a broken line shows that such plurality is uncertain. For example


Une paire de deux dents rapprochées indique qu'il y a plusieurs concepts partitifs d'un type donné. L'une de ces dents est en pointillés pour indiquer que leur nombre est indéterminé. Par exemple



A parenthetic term indicates a concept that is not defined in the Vocabulary, but is taken as a primitive which is assumed to be generally understood.


Un terme entre parenthèses désigne un concept qui n'est pas défini dans le Vocabulaire, mais qui est considéré comme un concept premier généralement compréhensible.

The associative relation (or pragmatic relation) is non-hierarchical and connects two concepts which are in some sort of thematic association. There are many subtypes of associative relation, but all are indicated by a double-headed arrow. For example,

La relation associative (ou relation pragmatique) est une relation non hiérarchique qui associe deux concepts ayant des liens thématiques d'une certaine sorte. Il y a de nombreux sous-types de relations associatives, mais tous sont indiqués par une double flèche. Par exemple

To avoid too complicated diagrams, they do not show all the possible associative relations. The diagrams will demonstrate that fully systematic derived terms have not been created, often because metrology is an old discipline with a vocabulary evolved by accretion rather than as a comprehensive de novo structure.

Pour éviter des schémas trop compliqués, toutes les relations associatives ne sont pas représentées. Les schémas mettent en évidence que les termes dérivés n'ont pas toujours une structure systématique, le plus souvent parce que la métrologie est une discipline ancienne, dont le vocabulaire a évolué par accrétion plutôt que d'avoir été créé ex nihilo sous la forme d'un ensemble complet et cohérent.

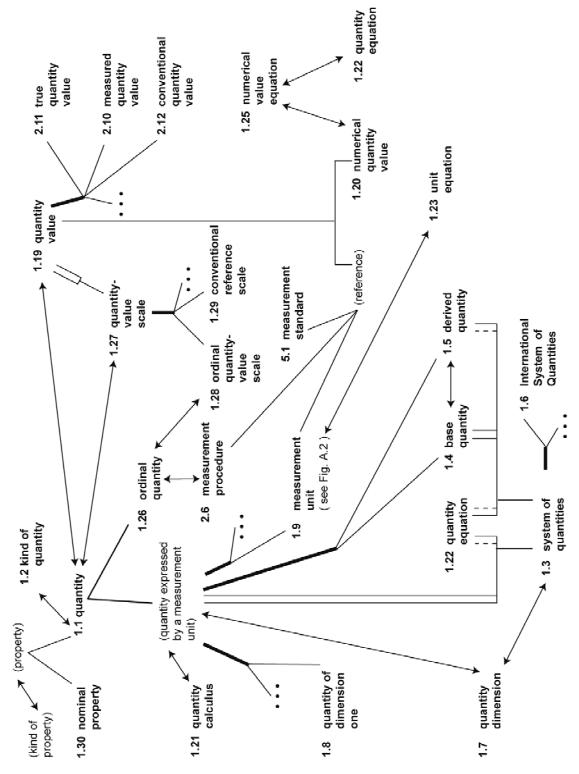


Figure A.1 — Concept diagram for part of Clause 1 around 'quantity'

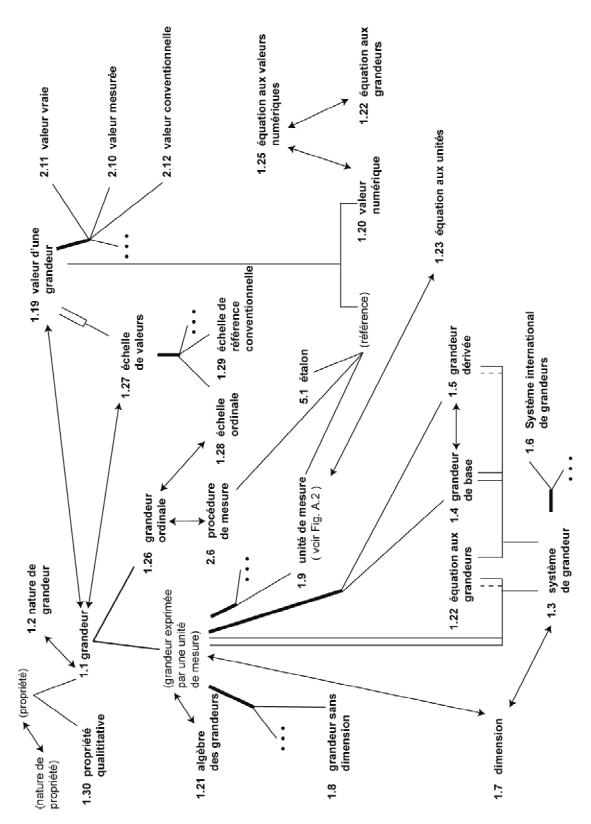


Figure A.1 — Schéma conceptuel pour la partie de l'Article 1 autour de «grandeur»

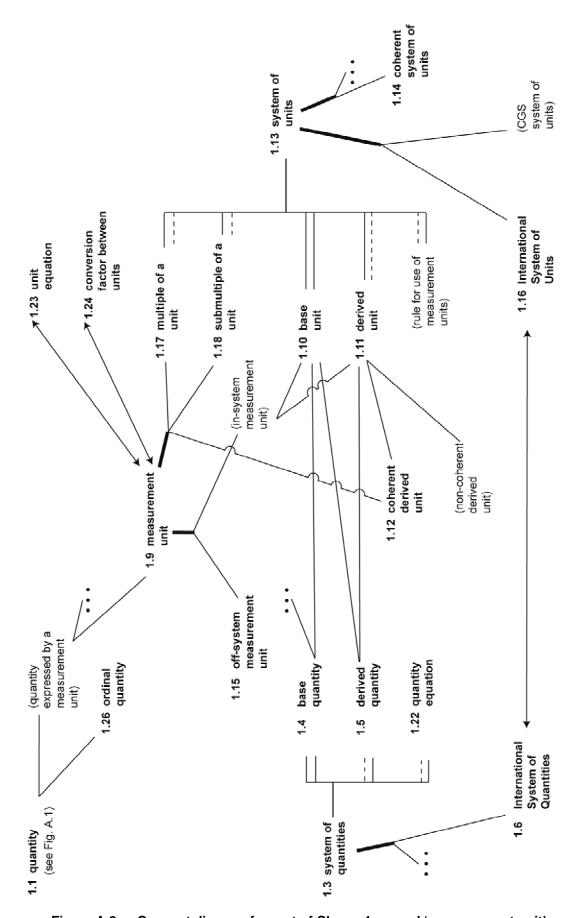


Figure A.2 — Concept diagram for part of Clause 1 around 'measurement unit'

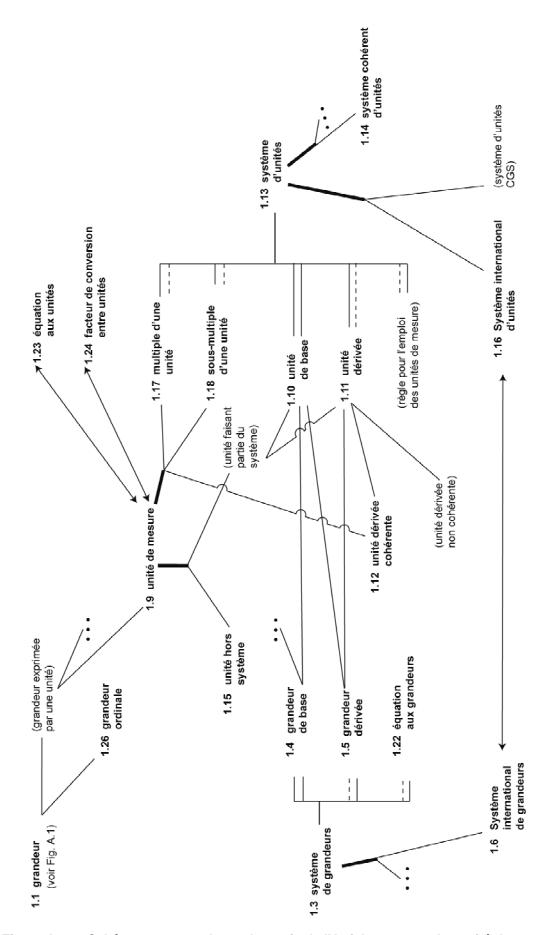


Figure A.2 — Schéma conceptuel pour la partie de l'Article 1 autour de «unité de mesure»

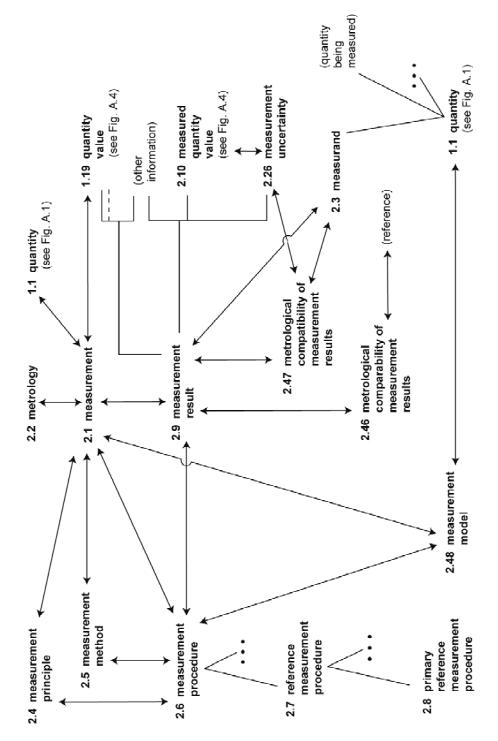


Figure A.3 — Concept diagram for part of Clause 2 around 'measurement'

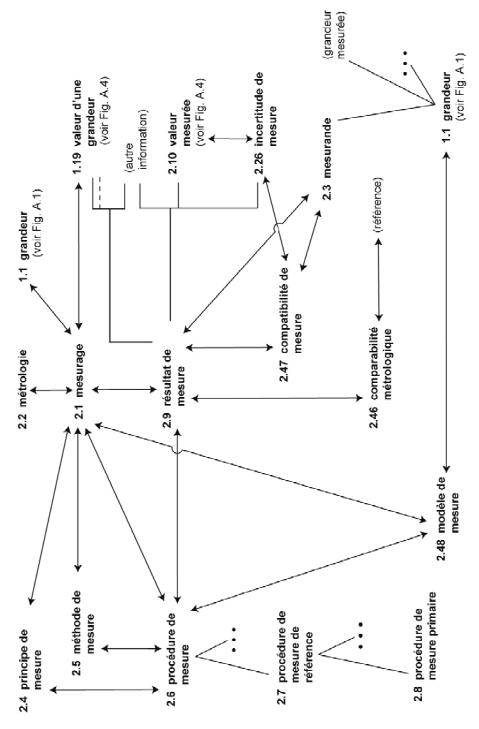


Figure A.3 — Schéma conceptuel pour la partie de l'Article 2 autour de «mesurage»

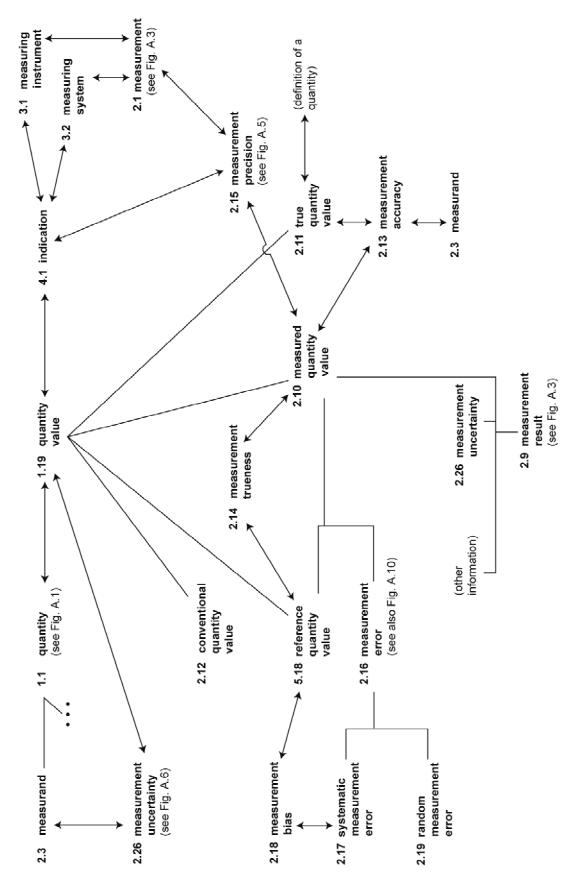


Figure A.4 — Concept diagram for part of Clause 2 around 'quantity value'

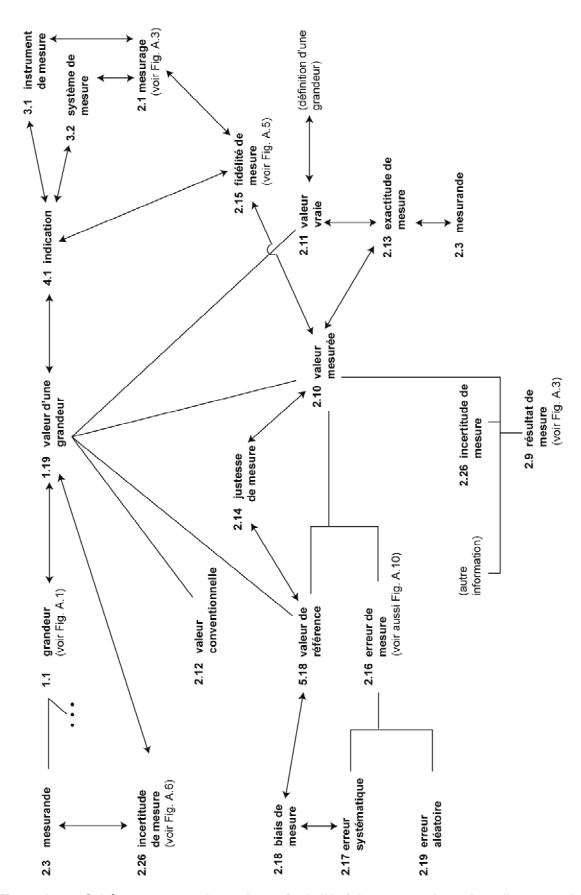


Figure A.4 — Schéma conceptuel pour la partie de l'Article 2 autour de «valeur d'une grandeur»

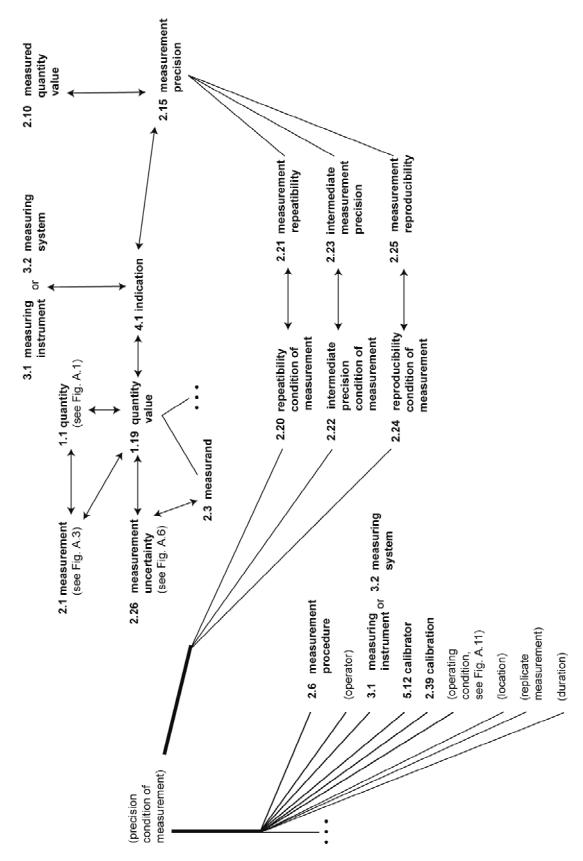


Figure A.5 — Concept diagram for part of Clause 2 around 'measurement precision'

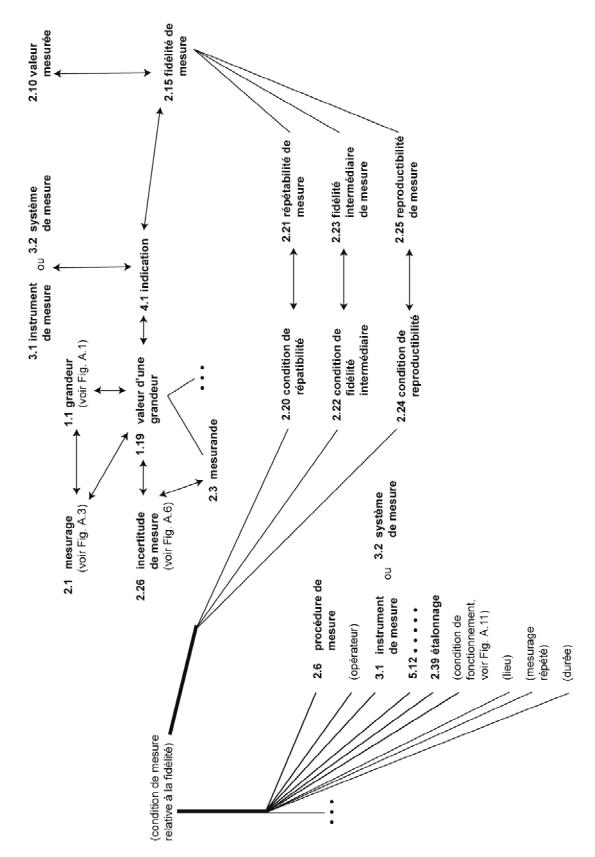


Figure A.5 — Schéma conceptuel pour la partie de l'Article 2 autour de «fidélité de mesure»

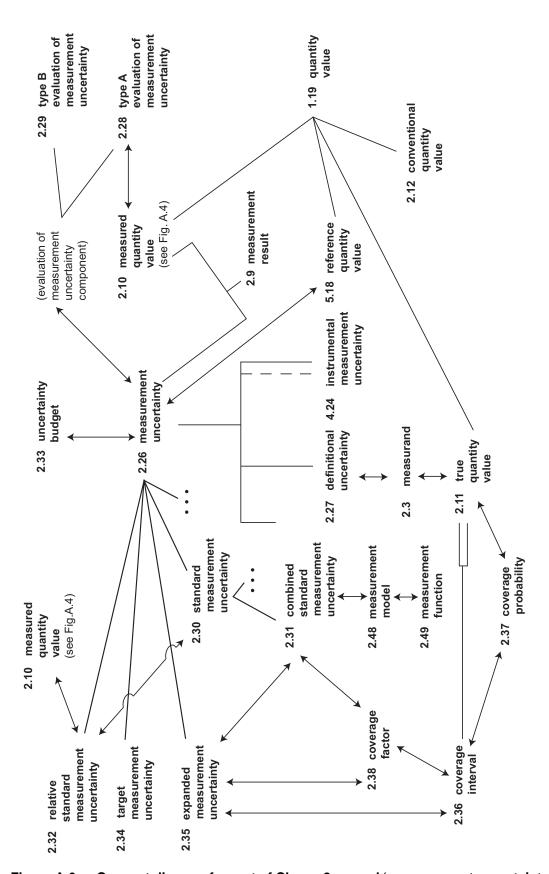


Figure A.6 — Concept diagram for part of Clause 2 around 'measurement uncertainty'

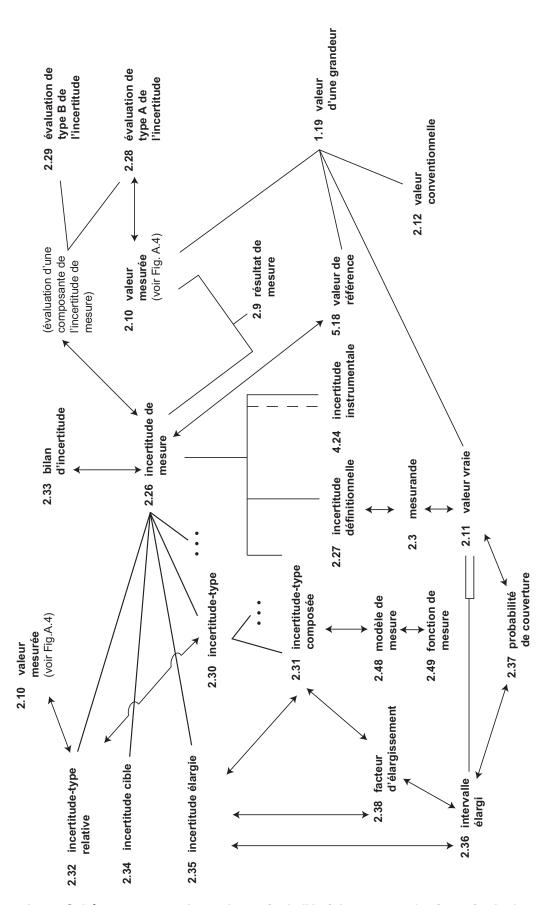


Figure A.6 — Schéma conceptuel pour la partie de l'Article 2 autour de «incertitude de mesure»

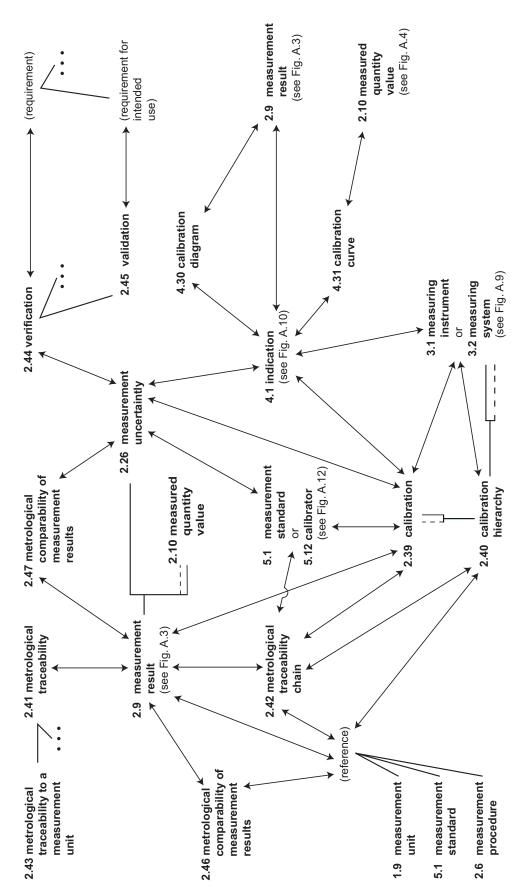


Figure A.7 — Concept diagram for part of Clause 2 around 'calibration'

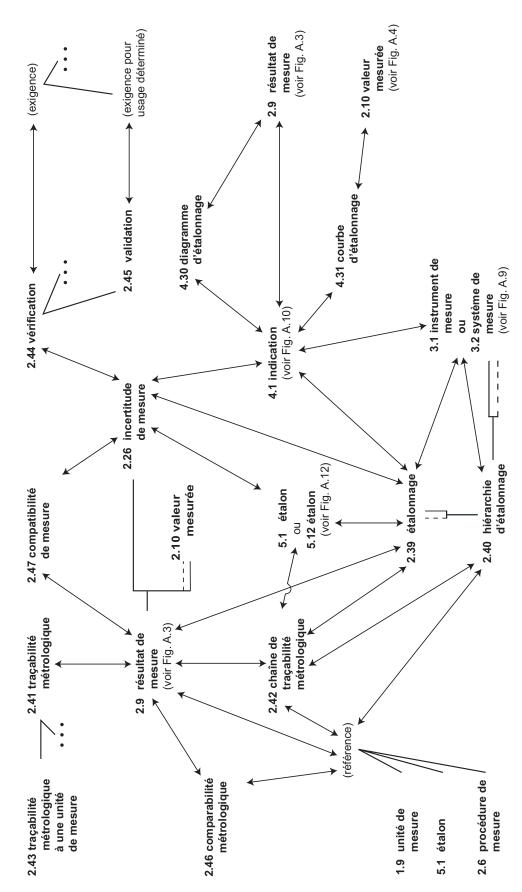


Figure A.7 — Schéma conceptuel pour la partie de l'Article 2 autour de «étalonnage»

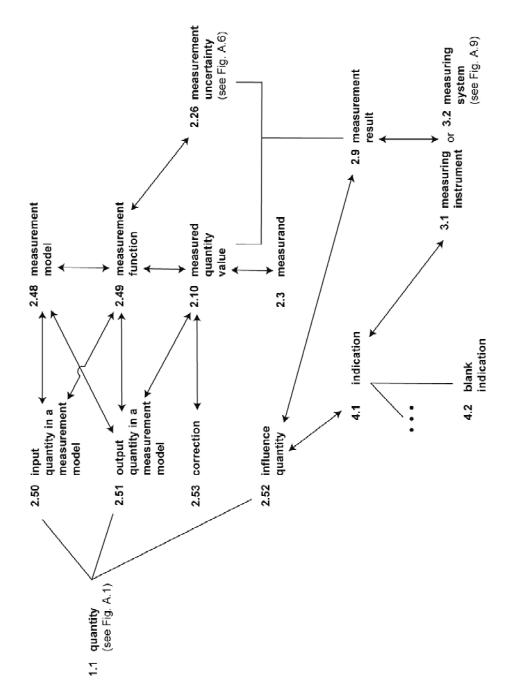


Figure A.8 — Concept diagram for part of Clause 2 around 'measured quantity value'

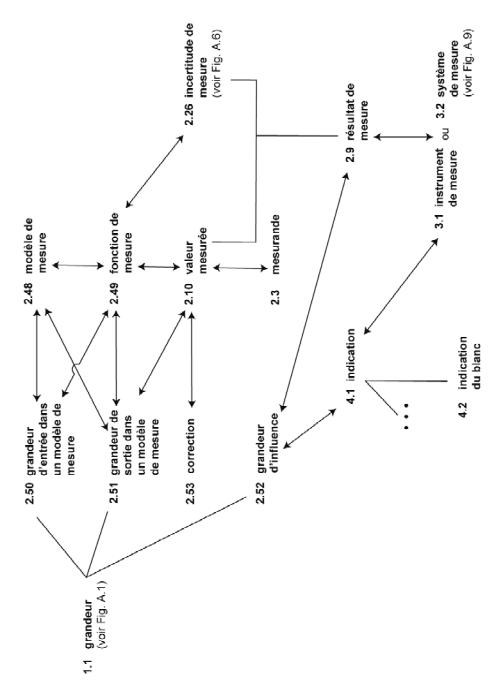


Figure A.8 — Schéma conceptuel pour la partie de l'Article 2 autour de «valeur mesurée»

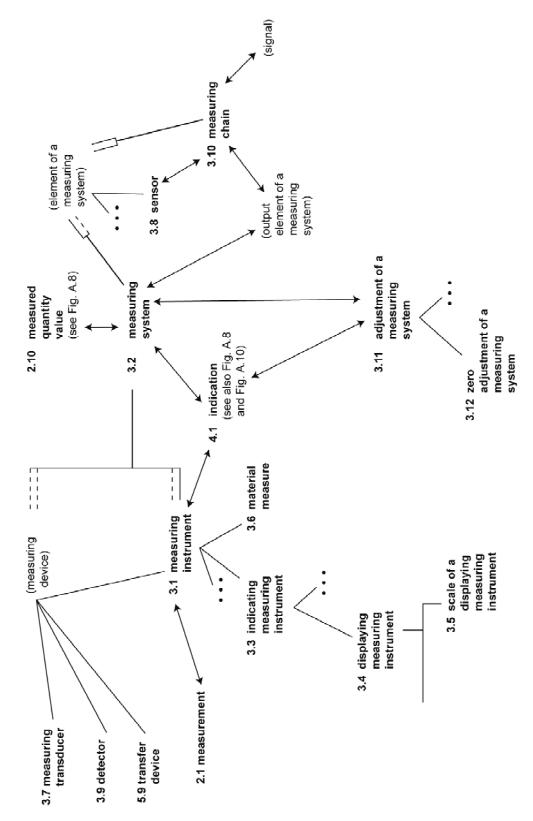


Figure A.9 — Concept diagram for part of Clause 3 around 'measuring system'

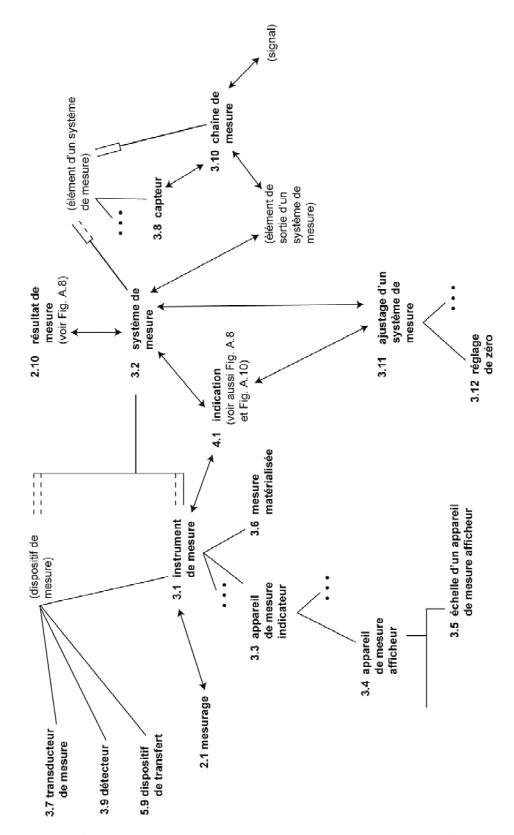


Figure A.9 — Schéma conceptuel pour la partie de l'Article 3 autour de «système de mesure»

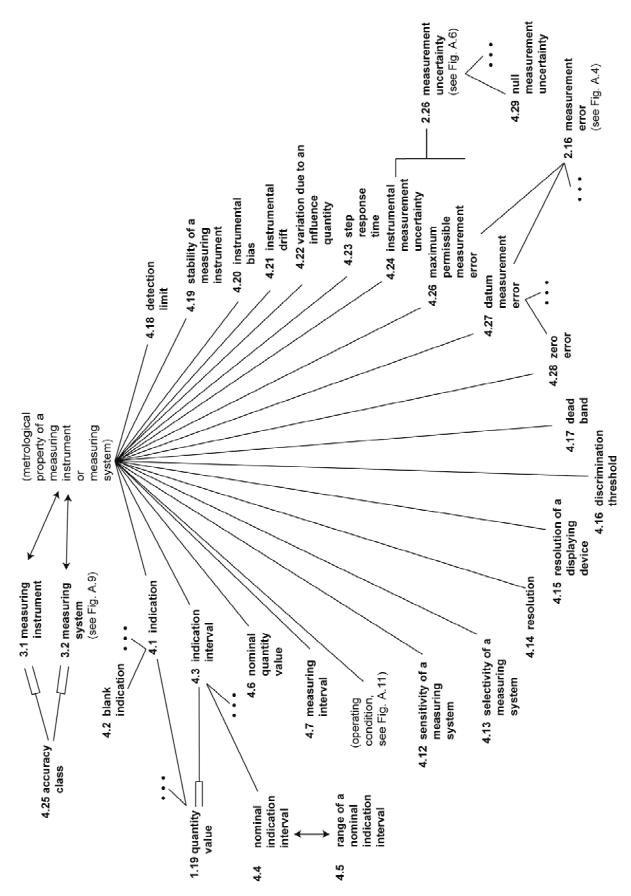


Figure A.10 — Concept diagram for part of Clause 4 around 'metrological properties of a measuring instrument or measuring system'

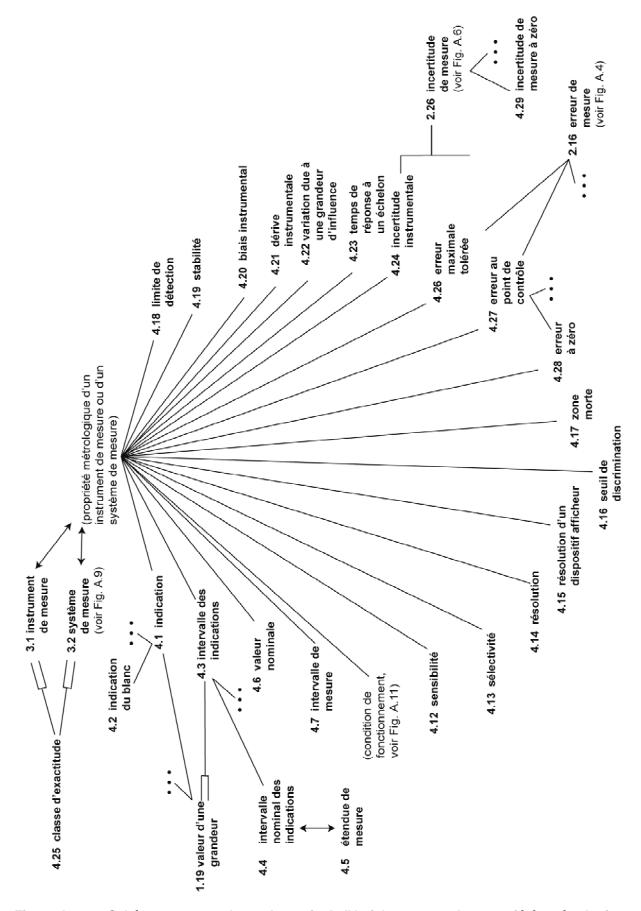


Figure A.10 — Schéma conceptuel pour la partie de l'Article 4 autour de «propriétés métrologiques d'un instrument de mesure ou d'un système de mesure»

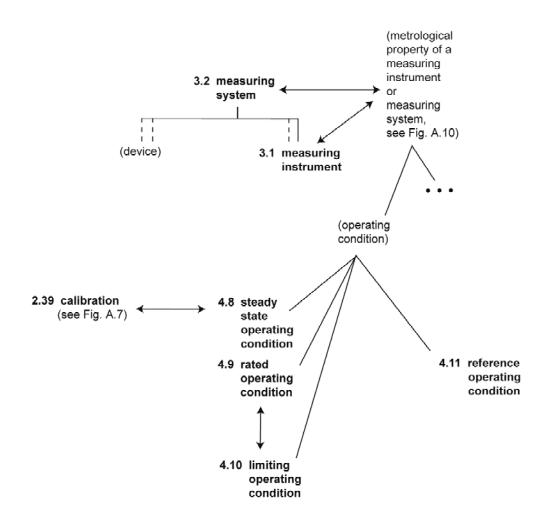


Figure A.11 — Concept diagram for part of Clause 4 around 'operating condition'

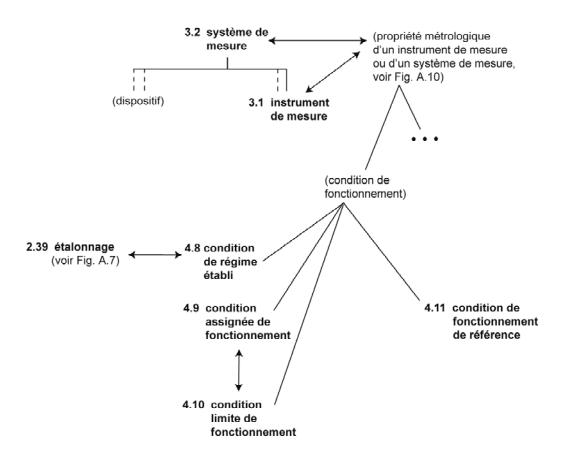


Figure A.11 — Schéma conceptuel pour la partie de l'Article 4 autour de «condition de fonctionnement»

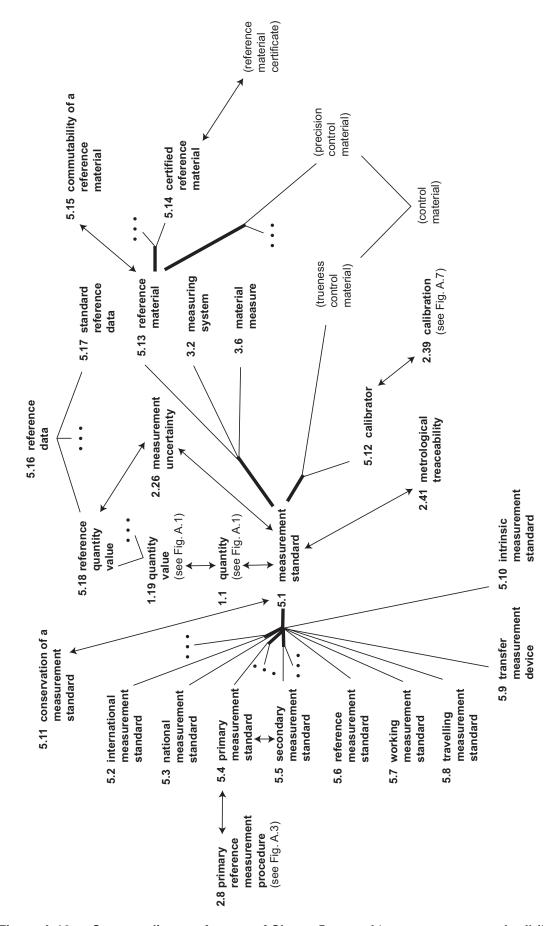


Figure A.12 — Concept diagram for part of Clause 5 around 'measurement standard' ('etalon')

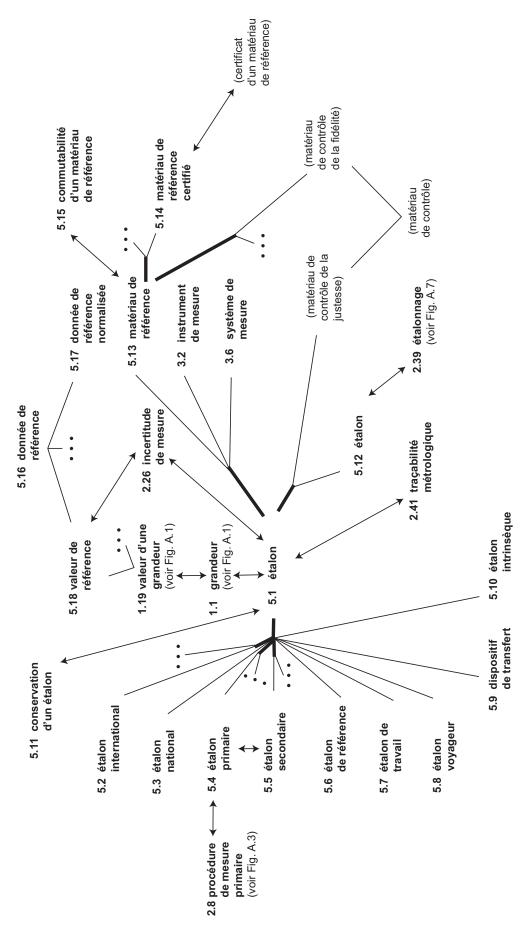


Figure A.12 — Schéma conceptuel pour la partie de l'Article 5 autour de «étalon»

Bibliography

- [1] ISO 31-0:1992 ¹⁾, Quantities and units Part 0: General principles
- [2] ISO 31-5²⁾, Quantities and units Part 5: Electricity and magnetism
- [3] ISO 31-6 ³⁾, Quantities and units Part 6: Light and related electromagnetic radiations
- [4] ISO 31-8 ⁴⁾, Quantities and units Part 8: Physical chemistry and molecular physics
- [5] ISO 31-9 ⁵⁾, Quantities and units Part 9: Atomic and nuclear physics
- [6] ISO 31-10 ⁶⁾, Quantities and units Part 10: Nuclear reactions and ionizing radiations
- [7] ISO 31-11 ⁷⁾, Quantities and units Part 11: Mathematical signs and symbols for use in the physical sciences and technology
- [8] ISO 31-12 8), Quantities and units Part 12: Characteristic numbers
- [9] ISO 31-13 ⁹⁾, Quantities and units Part 13: Solid state physics
- Under revision as ISO 80000-1, Quantities and units — Part 1: General.
- Under revision as IEC 80000-6, Quantities and units — Part 6: Electromagnetism.
- 3) Under revision as ISO 80000-7, Quantities and units Part 7: Light.
- 4) Under revision as ISO 80000-9, Quantities and units Part 9: Physical chemistry and molecular physics.
- 5) Under revision as ISO 80000-10, Quantities and units Part 10: Atomic and nuclear physics.
- Under revision as ISO 80000-10, Quantities and units — Part 10: Atomic and nuclear physics.
- 7) Under revision as ISO 80000-2, Quantities and units Part 2: Mathematical signs and symbols to be used in the natural sciences and technology.
- 8) Under revision as ISO 80000-11, Quantities and units Part 11: Characteristic numbers.
- 9) Under revision as ISO 80000-12, Quantities and units Part 12: Solid state physics.

Bibliographie

- [1] ISO 31-0:1992 ¹⁾, Grandeurs et unités Partie 0: Principes généraux
- [2] ISO 31-5 ²⁾, Grandeurs et unités Partie 5: Électricité et magnétisme
- [3] ISO 31-6 ³⁾, Grandeurs et unités Partie 6: Lumière et rayonnements électromagnétiques connexes
- [4] ISO 31-8 ⁴⁾, Grandeurs et unités Partie 8: Chimie physique et physique moléculaire
- [5] ISO 31-9 ⁵⁾, Grandeurs et unités Partie 9: Physique atomique et nucléaire
- [6] ISO 31-10 6), Grandeurs et unités Partie 10: Réactions nucléaires et rayonnements ionisants
- [7] ISO 31-11 ⁷⁾, Grandeurs et unités Partie 11: Signes et symboles mathématiques à employer dans les sciences physiques et dans la technique
- [8] ISO 31-12 ⁸⁾, Grandeurs et unités Partie 12: Nombres caractéristiques
- [9] ISO 31-13 ⁹⁾, Grandeurs et unités Partie 13: Physique de l'état solide
- En cours de révision sous la référence ISO 80000-1, Grandeurs et unités — Partie 1: Généralités.
- En cours de révision sous la référence CEI 80000-6, Grandeurs et unités — Partie 6: Électromagnétisme.
- 3) En cours de révision sous la référence ISO 80000-7, Grandeurs et unités — Partie 7: Lumière.
- 4) En cours de révision sous la référence ISO 80000-9, Grandeurs et unités — Partie 9: Chimie physique et physique moléculaire.
- En cours de révision sous la référence ISO 80000-10, Grandeurs et unités — Partie 10: Physique atomique et nucléaire.
- En cours de révision sous la référence ISO 80000-10, Grandeurs et unités — Partie 10: Physique atomique et nucléaire.
- 7) En cours de révision sous la référence ISO 80000-2, Grandeurs et unités — Partie 2: Signes et symboles mathématiques à employer dans les sciences de la nature et dans la technique.
- 8) En cours de révision sous la référence ISO 80000-11, Grandeurs et unités — Partie 11: Nombres caractéristiques.
- En cours de révision sous la référence ISO 80000-12, Grandeurs et unités — Partie 12: Physique de l'état solide.

- [10] ISO 704:2000, Terminology work Principles and methods
- [11] ISO 1000:1992/Amd.1:1998, SI units and recommendations for the use of their multiples and of certain other units
- [12] ISO 1087-1:2000, Terminology work Vocabulary — Part 1: Theory and application
- [13] ISO 3534-1, Statistics Vocabulary and symbols Part 1: General statistical terms and terms used in probability
- [14] ISO 5436-2, Geometrical Product Specifications (GPS) — Surface texture: Profile method; Measurement standards — Part 2: Software measurement standards
- [15] ISO 5725-1:1994/Cor.1:1998, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions
- [16] ISO 5725-2:1994/Cor.1:2002, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method
- [17] ISO 5725-3:1994/Cor.1:2001, Accuracy (trueness and precision) of measurement methods and results Part 3: Intermediate measures of the precision of a standard measurement method
- [18] ISO 5725-4:1994, Accuracy (trueness and precision) of measurement methods and results— Part 4: Basic methods for the determination of the trueness of a standard measurement method
- [19] ISO 5725-5:1998/Cor.1:2005, Accuracy (trueness and precision) of measurement methods and results — Part 5: Alternative methods for the determination of the precision of a standard measurement method
- [20] ISO 5725-6:1994/Cor.1:2001, Accuracy (trueness and precision) of measurement methods and results — Part 6: Use in practice of accuracy values

- [10] ISO 704:2000, Travail terminologique Principes et méthodes
- [11] ISO 1000:1992/Amd.1:1998, Unités SI et recommandations pour l'emploi de leurs multiples et de certaines autres unités
- [12] ISO 1087-1:2000, Travaux terminologiques Vocabulaire Partie 1: Théorie et application
- [13] ISO 3534-1, Statistique Vocabulaire et symboles — Partie 1: Termes statistiques généraux et termes utilisés en calcul des probabilités
- [14] ISO 5436-2, Spécification géométrique des produits (GPS) État de surface: Méthode du profil; Étalons Partie 2: Étalons logiciels
- [15] ISO 5725-1:1994/Cor.1:1998, Exactitude (justesse et fidélité) des résultats et méthodes de mesure Partie 1: Principes généraux et définitions
- [16] ISO 5725-2:1994/Cor.1:2002, Exactitude (justesse et fidélité) des résultats et méthodes de mesure Partie 2: Méthode de base pour la détermination de la répétabilité et de la reproductibilité d'une méthode de mesure normalisée
- [17] ISO 5725-3:1994/Cor.1:2001, Exactitude (justesse et fidélité) des résultats et méthodes de mesure Partie 3: Mesures intermédiaires de la fidélité d'une méthode de mesure normalisée
- [18] ISO 5725-4:1994, Exactitude (justesse et fidélité) des résultats et méthodes de mesure — Partie 4: Méthodes de base pour la détermination de la justesse d'une méthode de mesure normalisée (disponible en anglais seulement)
- [19] ISO 5725-5:1998/Cor.1:2005, Exactitude (justesse et fidélité) des résultats et méthodes de mesure Partie 5: Méthodes alternatives pour la détermination de la fidélité d'une méthode de mesure normalisée
- [20] ISO 5725-6:1994, Exactitude (justesse et fidélité) des résultats et méthodes de mesure — Partie 6: Utilisation dans la pratique des valeurs d'exactitude

- [21] ISO 9000:2005, Quality management systems Fundamentals and vocabulary
- [22] ISO 10012, Measurement management systems Requirements for measurement processes and measuring equipment
- [23] ISO 10241:1992, International terminology standards Preparation and layout
- [24] ISO 13528, Statistical methods for use in proficiency testing by interlaboratory comparisons
- [25] ISO 15189:2007, Medical laboratories Particular requirements for quality and competence
- [26] ISO 17511, In vitro diagnostic medical devices Measurement of quantities in biological samples Metrological traceability of values assigned to calibrators and control materials
- [27] ISO/TS 21748, Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation
- [28] ISO/TS 21749, Measurement uncertainty for metrological applications Repeated measurements and nested experiments
- [29] ISO 80000-3, Quantities and units Part 3: Space and time
- [30] ISO 80000-4, Quantities and units Part 4: Mechanics
- [31] ISO 80000-5, Quantities and units Part 5: Thermodynamics
- [32] ISO 80000-8, Quantities and units Part 8: Acoustics
- [33] ISO Guide 31:2000, Reference materials Contents of certificates and labels
- [34] ISO Guide 34:2000, General requirements for the competence of reference material producers
- [35] ISO Guide 35:2006, Reference materials General and statistical principles for certification

- [21] ISO 9000:2005, Systèmes de management de la qualité Principes essentiels et vocabulaire
- [22] ISO 10012, Systèmes de management de la mesure Exigences pour les processus et les équipements de mesure
- [23] ISO 10241:1992, Normes terminologiques internationales Élaboration et présentation
- [24] ISO 13528, Méthodes statistiques utilisées dans les essais d'aptitude par comparaisons interlaboratoires
- [25] ISO 15189:2007, Laboratoires d'analyses de biologie médicale Exigences particulières concernant la qualité et la compétence
- [26] ISO 17511, Dispositifs médicaux de diagnostic in vitro — Mesurage des grandeurs dans des échantillons d'origine biologique — Traçabilité métrologique des valeurs attribuées aux agents d'étalonnage et aux matériaux de contrôle
- [27] ISO/TS 21748, Lignes directrices relatives à l'utilisation d'estimations de la répétabilité, de la reproductibilité et de la justesse dans l'évaluation de l'incertitude de mesure
- [28] ISO/TS 21749, Incertitude de mesure pour les applications en métrologie Mesures répétées et expériences emboîtées
- [29] ISO 80000-3, Grandeurs et unités Partie 3: Espace et temps
- [30] ISO 80000-4, Grandeurs et unités Partie 4: Mécanique
- [31] ISO 80000-5, Grandeurs et unités Partie 5: Thermodynamique
- [32] ISO 80000-8, Grandeurs et unités Partie 8: Acoustique
- [33] Guide ISO 31:2000, Matériaux de référence Contenu des certificats et étiquettes
- [34] Guide ISO 34:2000, Exigences générales pour la compétence des producteurs de matériaux de référence (disponible en anglais seulement)
- [35] Guide ISO 35:2006, Matériaux de référence Principes généraux et statistiques pour la certification (disponible en anglais seulement)

- [36] Guide to the expression of uncertainty in measurement (GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1993 amended 1995
- [37] JCGM 101:2008, Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" Propagation of distributions using a Monte Carlo method
- [38] IEC 60027-2:2005, Letter symbols to be used in electrical technology Part 2: Telecommunications and electronics
- [39] IEC 60050-300:2001, International Electrotechnical Vocabulary Electrical and electronic measurements and measuring instruments Part 311: General terms relating to measurements Part 312: General terms relating to electrical measurements Part 313: Types of electrical measuring instruments Part 314: Specific terms according to the type of instrument
- [40] IEC 60359:2001, Ed. 3.0 (bilingual), *Electrical* and electronic measurement equipment Expression of performance
- [41] IEC 80000-13, Quantities and units Part 13: Information science and technology
- [42] BIPM: *The International System of Units (SI)*, 8th edition, 2006
- [43] BIPM, Consultative Committee for Amount of Substance (CCQM) 5th Meeting (February 1999)
- [44] P.J. MOHR, B.N. TAYLOR, D.B. NEWELL, Recommended Values of the Fundamental Physical Constants: 2002, *Reviews of Modern Physics*, **77**, 2005, 107 pp. http://physics.nist.gov/constants
- [45] EMONS, H., FAJGELJ, A., VAN DER VEEN, A.M.H. and WATTERS, R. New definitions on reference materials. *Accred. Qual. Assur.*, **10**, 2006, pp. 576-578
- [46] Guide to the expression of uncertainty in measurement (1993, amended 1995) (published by ISO in the name of BIPM, IEC, IFCC, IUPAC, IUPAP and OIML)
- [47] IFCC-IUPAC: Approved Recommendation (1978). Quantities and Units in Clinical Chemistry, *Clin. Chim. Acta*, 1979:**96**:157F:183F

- [36] Guide pour l'expression de l'incertitude de mesure (GUM), BIPM, CEI, FICC, ISO, OIML, UICPA, UIPPA, 1993 amendé en 1995
- [37] JCGM 101:2008, Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" Propagation of distributions using a Monte Carlo method
- [38] CEI 60027-2:2005, Symboles littéraux à utiliser en électrotechnique Partie 2: Télécommunications et électronique
- [39] CEI 60050-300:2001, Vocabulaire Électrotechnique International Mesures appareils de mesure électriques électroniques — Partie 311: Termes généraux concernant les mesures — Partie 312: Termes concernant les électriques — Partie 313: Types d'appareils électriques de mesure — Partie 314: Termes spécifiques selon le type d'appareil
- [40] CEI 60359:2001, Ed. 3.0 (Bilingue), Appareils de mesure électriques et électroniques Expression des performances
- [41] CEI 80000-13, Grandeurs et unités Partie 13: Science et technologies de l'information
- [42] BIPM: Le Système international d'unités (SI), 8^e édition, 2006
- [43] BIPM, Comité consultatif pour la quantité de matière (CCQM) 5^e session (février 1999)
- [44] P.J. MOHR, B.N. TAYLOR, D.B. NEWELL. Recommended Values of the Fundamental Physical Constants: 2002, *Reviews of Modern Physics*, **77**, 2005, 107 pp. http://physics.nist.gov/constants
- [45] EMONS, H., FAJGELJ, A., VAN DER VEEN, A.M.H. and WATTERS, R. New definitions on reference materials. *Accred. Qual. Assur.*, **10**, 2006, pp. 576-578
- [46] Guide pour l'expression de l'incertitude de mesure (1993, corrigé 1995) (publié par l'ISO au nom du BIPM, de la CEI, du FICC, de l'OIML, de l'UICPA et de l'IUPPA)
- [47] IFCC-IUPAC: Approved Recommendation (1978). Quantities and Units in Clinical Chemistry, *Clin. Chim. Acta*, 1979:**96**:157F:183F

- [48] ILAC P-10 (2002), ILAC Policy on Traceability of Measurement Results
- [49] J.K. BÖHLKE, R. de LAETER, P. DE BIÈVRE, H. HIDAKA, H.S. PEISER, K.J.R. ROSMAN, P.D.P. TAYLOR. Isotopic Composition of the Elements, 2001, *J. Phys. Chem. Ref. Data.*, **34**, 2005, pp. 57-67
- [50] IUPAP–25: Booklet on Symbols, Units, Nomenclature and Fundamental Constants. Document IUPAP–25, E.R. Cohen and P. Giacomo, *Physica* **146**A, 1987, pp. 1-68 ¹⁰⁾
- [51] IUPAC: Quantities, Units and Symbols in Physical Chemistry (1993, 2007)
- [52] IUPAC, *Pure Appl. Chem.*, **75**, 2003, pp. 1107-1122
- [53] OIML V1:2000, International Vocabulary of Terms in Legal Metrology (VIML)
- [54] WHO 75/589, Chorionic gonadotrophin, human, 1999
- [55] WHO 80/552, Luteinizing hormone, human, pituitary, 1988

- [48] ILAC P-10 (2002), ILAC Policy on Traceability of Measurement Results
- [49] J.K. BÖHLKE, R. de LAETER, P. DE BIEVRE, H. HIDAKA, H.S. PEISER, K.J.R. ROSMAN, P.D.P. TAYLOR. Isotopic Composition of the Elements, 2001, *J. Phys. Chem. Ref. Data.*, **34**, 2005, pp. 57-67
- [50] IUPAP-25: Booklet on Symbols, Units, Nomenclature and Fundamental Constants. Document IUPAP-25, E.R. Cohen et P. Giacomo, *Physica*, **146**A, 1987, pp. 1-68 ¹⁰⁾
- [51] IUPAC (UICPA): Quantities, Units and Symbols in Physical Chemistry (1993, 2007)
- [52] IUPAC, *Pure Appl. Chem.*, **75**, 2003, pp. 1107-1122
- [53] OIML V1:2000, Vocabulaire international des termes de métrologie légale (VIML)
- [54] WHO 75/589, Chorionic gonadotrophin, human, 1999
- [55] WHO 80/552, Luteinizing hormone, human, pituitary, 1988

¹⁰⁾ To be revised and published on the Web.

Sera révisé et publié sur le Web.

	List	of	acronyms
--	------	----	----------

Liste de sigles

BIPM	International Bureau of Weights and Measures	BIPM	Bureau international des poids et mesures
CCQM	Consultative Committee for Amount of Substance — Metrology in Chemistry	CCQM	Comité consultatif pour la quantité de matière — Métrologie en chimie
CGPM	General Conference on Weights and Measures	CGPM	Conférence générale des poids et mesures
CODATA	Committee on Data for Science and Technology	CODATA	Comité pour les données scientifiques et technologiques
GUM	Guide to the Expression of Uncertainty in Measurement	GUM	Guide pour l'expression de l'incertitude de mesure
IAEA	International Atomic Energy Agency	AIEA	Agence internationale pour l'énergie atomique
ICSU	International Council for Science	ICSU	Conseil international pour la science
IEC	International Electrotechnical Commission	CEI	Commission électrotechnique internationale
IFCC	International Federation of Clinical Chemistry and Laboratory Medicine	IFCC	Fédération internationale de chimie clinique et biologie médicale
ILAC	International Laboratory Accreditation Cooperation	ILAC	Coopération internationale sur l'agrément des laboratoires d'essai
ISO	International Organization for Standardization	ISO	Organisation internationale de normalisation
ISO/REMCO	International Organization for Standardization, Reference Materials Committee	ISO/REMCO	Organisation internationale de normalisation, comité pour les matériaux de référence
IUPAC	International Union of Pure and Applied Chemistry	UICPA	Union internationale de chimie pure et appliquée
IUPAC/CIAAW	International Union of Pure and Applied Chemistry — Commission on Isotopic Abundances and Atomic Weights	UICPA/CIAAW	Union internationale de chimie pure et appliquée — Commission des abondances isotopiques et des poids atomiques
IUPAP	International Union of Pure and Applied Physics	UIPPA	Union internationale de physique pure et appliquée
JCGM	Joint Committee for Guides in Metrology	JCGM	Comité commun pour les guides en métrologie
JCGM/WG 1	Joint Committee for Guides in Metrology, Working Group 1 on the GUM	JCGM/WG 1	Groupe de travail 1 du Comité commun pour les guides en métrologie (GUM)

JCGM/WG 2	Joint Committee for Guides in Metrology, Working Group 2 on the VIM	JCGM/WG 2	Groupe de travail 2 du Comité commun pour les guides en métrologie (VIM)
OIML	International Organization of Legal Metrology	OIML	Organisation internationale de métrologie légale
VIM, 2nd edition	International Vocabulary of Basic and General Terms in Metrology (1993)	VIM, 2 ^e édition	Vocabulaire international des termes fondamentaux et généraux de métrologie (1993)
VIM, 3rd edition	International Vocabulary of Metrology — Basic and General Concepts and Associated Terms (this publication) VIM	VIM, 3 ^e édition	Vocabulaire international de métrologie — Concepts fondamentaux et généraux et termes associés (cette publication) VIM
VIML	International Vocabulary of Terms in Legal Metrology	VIML	Vocabulaire international des termes de métrologie légale
WHO	World Health Organization	OMS	Organisation mondiale de la santé

Alphabetical index

Α	detection limit 4.18 detector 3.9	L
accuracy 2.13	dimension 1.7	limit of detection 4.18
accuracy class 4.25	dimension of a quantity 1.7	limit of error 4.26
accuracy of measurement 2.13	dimensionless quantity 1.8	limiting operating condition 4.10
adjustment 3.11	discrimination threshold 4.16	mining operating condition
adjustment of a measuring	displaying measuring	
system 3.11	instrument 3.4	M
		IVI
В	E	maintenance of a measurement
		standard 5.11
background indication 4.2		material measure 3.6
base quantity 1.4	error 2.16	maximum permissible error 4.26
base unit 1.10	error of measurement 2.16	maximum permissible
bias 2.18	etalon 5.1	measurement error 4.26
blank indication 4.2	expanded measurement	measurand 2.3
Marik marcation 4.2	uncertainty 2.35	measured quantity value 2.10
	expanded uncertainty 2.35	measured value 2.10
С		measurement 2.1
C		measurement accuracy 2.13
	1	measurement bias 2.18
calibration 2.39	'	measurement error 2.16
calibration curve 4.31		measurement function 2.49
calibration diagram 4.30	la disetta a assessa	measurement method 2.5
calibration hierarchy 2.40	indicating measuring	measurement model 2.48
calibrator 5.12	instrument 3.3	measurement precision 2.15
certified reference material 5.14	indication 4.1	measurement principle 2.4
coherent derived unit 1.12	indication interval 4.3	measurement procedure 2.6
coherent system of units 1.14	influence quantity 2.52	measurement repeatability 2.21
combined standard measurement	input quantity 2.50	measurement reproducibility 2.25
uncertainty 2.31	input quantity in a measurement	measurement result 2.9
combined standard uncertainty 2.31	model 2.50	measurement scale 1.27
commutability of a reference	instrumental bias 4.20	measurement standard 5.1
material 5.15	instrumental drift 4.21	measurement trueness 2.14
conservation of a measurement	instrumental measurement	measurement uncertainty 2.26
standard 5.11	uncertainty 4.24	measurement unit 1.9
conventional quantity value 2.12	intermediate measurement	measuring chain 3.10
conventional reference scale 1.29	precision 2.23	measuring instrument 3.1
conventional value 2.12	intermediate precision 2.23	measuring interval 4.7
conventional value of a	intermediate precision	measuring system 3.2
quantity 2.12	condition 2.22	measuring transducer 3.7
conversion factor between	intermediate precision condition of	method of measurement 2.5
units 1.24	measurement 2.22	metrological comparability 2.46
correction 2.53	international measurement	metrological comparability of
	standard 5.2	measurement results 2.46
coverage factor 2.38	International System of	metrological compatibility 2.47
coverage interval 2.36	Quantities 1.6	metrological compatibility of
coverage probability 2.37	International System of Units 1.16	measurement results 2.47
CRM 5.14	intrinsic measurement	metrological traceability 2.41
	standard 5.10	metrological traceability
D	intrinsic standard 5.10	chain 2.42
U	ISQ 1.6	metrological traceability to
		a measurement unit 2.43
datum error 4.27		metrological traceability to a
datum measurement error 4.27	K	unit 2.43
dead band 4.17	11	metrology 2.2
definitional uncertainty 2.27		metrology 2.2 model 2.48
	kind 12	model of measurement 2.48
MELLYEN LUMININ () ()	W 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

kind of quantity 1.2

derived unit 1.11

multiple of a unit 1.17

Ν rated operating condition 4.9 systematic measurement reference condition 4.11 **error** 2.17 national measurement reference data 5.16 standard 5.3 reference material 5.13 Τ national standard 5.3 reference measurement nominal indication interval 4.4 procedure 2.7 reference measurement target measurement nominal interval 4.4 uncertainty 2.34 nominal property 1.30 standard 5.6 target uncertainty 2.34 reference operating nominal quantity value 4.6 traceability chain 2.42 condition 4.11 nominal value 4.6 transfer device 5.9 reference quantity value 5.18 null measurement uncertainty 4.29 transfer measurement device 5.9 reference standard 5.6 reference value 5.18 travelling measurement numerical quantity value 1.20 relative standard measurement standard 5.8 numerical quantity value uncertainty 2.32 equation 1.25 travelling standard 5.8 true quantity value 2.11 numerical value 1.20 repeatability 2.21 true value 2.11 numerical value equation 1.25 repeatability condition 2.20 numerical value of a quantity 1.20 repeatability condition of true value of a quantity 2.11 trueness 2.14 measurement 2.20 trueness of measurement 2.14 reproducibility 2.25 reproducibility condition 2.24 Type A evaluation 2.28 0 reproducibility condition of Type A evaluation of measurement uncertainty 2.28 measurement 2.24 off-system measurement unit 1.15 Type B evaluation 2.29 resolution 4.14 off-system unit 1.15 resolution of a displaying Type B evaluation of measurement ordinal quantity 1.26 device 4.15 uncertainty 2.29 ordinal quantity-value scale 1.28 result of measurement 2.9 ordinal value scale 1.28 **RM** 5.13 output quantity 2.51 U output quantity in a measurement **model** 2.51 S uncertainty 2.26 uncertainty budget 2.33 scale of a displaying measuring uncertainty of measurement 2.26 Р instrument 3.5 unit 1.9 secondary measurement unit equation 1.23 precision 2.15 standard 5.5 unit of measurement primary measurement secondary standard 5.5 standard 5.4 selectivity 4.13 primary reference measurement selectivity of a measuring V procedure 2.8 system 4.13 primary reference procedure 2.8 sensitivity 4.12 validation 2.45 primary standard 5.4 sensitivity of a measuring value 1.19 principle of measurement 2.4 system 4.12 value of a measured quantity 2.10 sensor 3.8 value of a quantity 1.19 **SI** 1.16 variation due to an influence Q stability 4.19 quantity 4.22 verification 2.44 stability of a measuring quantity 1.1 instrument 4.19 quantity calculus 1.21 standard measurement quantity dimension 1.7 uncertainty 2.30 W quantity equation 1.22 standard reference data 5.17 quantity of dimension one 1.8 standard uncertainty 2.30 working interval 4.7 quantity value 1.19 standard uncertainty of working measurement quantity-value scale 1.27 measurement 2.30 standard 5.7 steady-state operating working standard 5.7 condition 4.8 R step response time 4.23 submultiple of a unit 1.18 Ζ random error 2.19 system of quantities 1.3 random error of measurement 2.19 zero adjustment 3.12 system of units 1.13 random measurement error 2.19 zero adjustment of a measuring systematic error 2.17 range of a nominal indication system 3.12

systematic error of

measurement 2.17

zero error 4.28

interval 4.5

Index alphabétique

Α	diagramme d'étalonnage 4.30	facteur d'élargissement 2.38
	dimension 1.7	fidélité 2.15
ajustage 3.11	dimension d'une grandeur 1.7	fidélité de mesure 2.15
ajustage d'un système de	dispositif de transfert 5.9	fidélité intermédiaire 2.23
mesure 3.11	donnée de référence 5.16	fidélité intermédiaire de
algèbre des grandeurs 1.21	donnée de référence	mesure 2.23
appareil afficheur 3.4	normalisée 5.17	fonction de mesure 2.49
appareil de mesure 3.1		
appareil de mesure afficheur 3.4	Е	G
appareil indicateur 3.3	_	
appareil indicateur 3.3 attribut 1.30	échelle 3.5	grandeur 1.1
allribut 1.30	échelle de mesure 1.27	grandeur de base 1.4
	échelle de référence	grandeur de dimension un 1.8
В	conventionnelle 1.29	grandeur de sortie 2.51
2	échelle de repérage 1.28	grandeur de sortie dans un modèle
biais 2.18	échelle de valeurs 1.27	de mesure 2.51
biais de mesure 2.18	échelle d'un appareil de mesure	grandeur d'entrée 2.50
biais instrumental 4.20	afficheur 3.5	grandeur d'entrée dans un modèle
bilan d'incertitude 2.33	échelle ordinale 1.28	de mesure 2.50
bhan a meertitade 2.55	équation aux grandeurs 1.22	grandeur dérivée 1.5
	équation aux unités 1.23	grandeur d'influence 2.52
С	équation aux valeurs	grandeur ordinale 1.26
	numériques 1.25	grandeur repérable 1.26
calibre 4.4	erreur 2.16	grandeur sans dimension 1.8
capteur 3.8	erreur à zéro 4.28	
chaîne de mesure 3.10	erreur aléatoire 2.19	Н
chaîne de traçabilité 2.42	erreur au point de contrôle 4.27	11
chaîne de traçabilité	erreur de justesse 2.18	hiérarchie d'étalonnage 2.40
métrologique 2.42	erreur de justesse d'un	moraromo a otaromiago - 1.10
classe d'exactitude 4.25	instrument 4.20	
commutabilité d'un matériau	erreur de mesure 2.16	I
de référence 5.15	erreur maximale tolérée 4.26	
comparabilité métrologique 2.46	erreur systématique 2.17	incertitude 2.26
compatibilité de mesure 2.47	étalon 5.1	incertitude anticipée 2.34
compatibilité métrologique 2.47	étalon de référence 5.6	incertitude cible 2.34
condition assignée de	étalon de travail 5.7	incertitude de mesure 2.26
fonctionnement 4.9	étalon international 5.2	incertitude de mesure à zéro 4.29
condition de fidélité	étalon intrinsèque 5.10	incertitude définitionnelle 2.27
intermédiaire 2.22	étalon national 5.3	incertitude élargie 2.35
condition de fonctionnement de	étalon primaire 5.4	incertitude instrumentale 4.24
référence 4.11	étalon secondaire 5.5	incertitude-type 2.30
condition de référence 4.11	étalon voyageur 5.8 étalonnage 2.39	incertitude-type composée 2.31 incertitude-type relative 2.32
condition de régime établi 4.8	étendue de mesure 4.5	indication 4.1
condition de régime permanent 4.8	étendue nominale 4.5	indication 4.1
condition de répétabilité 2.20	évaluation de type A 2.28	indication du blanc 4.2
condition de reproductibilité 2.24	évaluation de type A de	instrument de mesure 3.1
condition limite 4.10	l'incertitude 2.28	intervalle de mesure 4.7
condition limite de	évaluation de type B 2.29	intervalle des indications 4.3
fonctionnement 4.10	évaluation de type B de	intervalle élargi 2.36
conservation d'un étalon 5.11	l'incertitude 2.29	intervalle nominal 4.4
constance 4.19 correction 2.53	exactitude 2.13	intervalle nominal des
	exactitude de mesure 2.13	indications 4.4
courbe d'étalonnage 4.31	2.10	ISQ 1.6
D	F	J
		J
dérive instrumentale 4.21	facteur de conversion entre	iustesse 2.14

unités 1.24

détecteur 3.9

justesse de mesure 2.14

L	S		Z
limite de détection 4.18 limite d'erreur 4.26	sélectivité 4.13 sensibilité 4.12 seuil de discrimination 4.16 seuil de mobilité 4.16	zone morte	4.17
М	SI 1.16 sous-multiple d'une unité 1.18		
maintenance d'un étalon 5.11 matériau de référence 5.13 matériau de référence certifié 5.14 mesurage 2.1 mesurande 2.3 mesure 2.1 mesure matérialisée 3.6 méthode de mesure 2.5 métrologie 2.2	stabilité 4.19 système cohérent d'unités 1.14 système de grandeurs 1.3 système de mesure 3.2 système d'unités 1.13 Système international de grandeurs 1.6 Système international d'unités 1.16		
mobilité 4.16 modèle 2.48	Т		
modèle de mesure 2.48 MR 5.13 MRC 5.14 multiple d'une unité 1.17	temps de réponse à un échelon 4.23 traçabilité métrologique 2.41 traçabilité métrologique à une unité 2.43		
N	traçabilité métrologique à une unité de mesure 2.43		
nature 1.2	transducteur de mesure 3.7		
nature de grandeur 1.2	U		
Р	unité 1.9 unité de base 1.10		
principe de mesure 2.4 probabilité de couverture 2.37 procédure de mesure 2.6 procédure de mesure de référence 2.7	unité de mesure 1.9 unité dérivée 1.11 unité dérivée cohérente 1.12 unité hors système 1.15		
procédure de mesure primaire 2.8 procédure opératoire 2.6 procédure opératoire de référence 2.7	V		
procédure opératoire primaire 2.8 propriété qualitative 1.30	valeur 1.19 valeur conventionnelle 2.12 valeur conventionnelle d'une grandeur 2.12		
R	valeur de référence 5.18 valeur d'une grandeur 1.19 valeur mesurée 2.10		
réglage de zéro 3.12 répétabilité 2.21 répétabilité de mesure 2.21 reproductibilité 2.25	valeur nominale 4.6 valeur numérique 1.20 valeur numérique d'une grandeur 1.20		
reproductibilité de mesure 2.25 résolution 4.14 résolution d'un dispositif afficheur 4.15	valeur vraie 2.11 valeur vraie d'une grandeur 2.11 validation 2.45 variation due à une grandeur		
résultat de mesure 2.9 résultat d'un mesurage 2.9	d'influence 4.22 vérification 2.44		